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Abstract—Human action abnormality detection has been 
attempted by various sensors for application domains like 
rehabilitation, healthcare, and assisted living. Since the release of 
motion sensors that ease the human body skeleton retrieval, 
skeleton-based human action recognition has recently been an 
active topic in the area of artificial intelligence. Unlike human 
action recognition, human action abnormality detection is an 
emerging field that aims to detect the incorrect action from the 
same action class. Graph convolutional network has been widely 
adopted for human action recognition. However, to the best of our 
knowledge, whether it could be effective for the task of human 
action abnormality detection has not been attempted. To advance 
prior work in the emerging field of human action abnormality 
detection, we propose a novel method that uses graph 
convolutional network to detect abnormal actions in skeleton data. 
To validate the effectiveness of our proposed method, we conduct 
extensive experiments on a public dataset called UI-PRMD. Based 
on the experimental results, our proposed method achieved 
superior action abnormality detection performance comparing 
with existing deep learning methods.  

Keywords—abnormality detection, graph convolutional network, 
human action evaluation 

I. INTRODUCTION 
Traditionally, rehabilitation therapies are often conducted by 

experienced clinical staffs or physical therapists for the recovery 
and prevention of a broad array of musculoskeletal disorders like 
tendonitis, epicondylitis, mechanical back syndrome, etc. With 
the affected working ability, it is often unaffordable for patients 
to take such regular rehabilitation therapy episodes [1]. 
Accordingly, home-based rehabilitation programs initiated with 
the supervision of a therapist becomes a widely accepted and 
cost-effective alternative [2]. In home-based rehabilitation 
setting, patients need to follow tailored exercises and regularly 
report the outcome of their rehabilitation progresses to their 
physical therapists. However, patients are usually failed to 
adhere to the exercise regimens recommended by their therapists 
in the home-based setting, which usually leads to even higher 
healthcare expenditure [3]. There remains a lack of practical 
methods for increasing adherence to home-based rehabilitation 
exercises, but providing patient-identified barriers is likely to 
increase the adherence [4]. Patient-identified barriers is 
intuitively working as a professional therapist to motivate the 
patients to adhere their rehabilitation exercises. 

      
Fig. 1. A sequence of the skeleton graph representing the skeleton modality. 

Recently, home-based physical therapy systems [5, 6] have 
been proposed to enable therapists remotely monitoring the 
rehabilitation process of patients and even providing real-time 
feedbacks to patients. In existing virtual rehabilitation systems 
[5, 6], the therapeutic exercises performed by patients are 
recorded with a motion sensor known as Kinect. The Kinect 
sensor could provide multiple data modalities like skeleton, 
depth and RGB [7]. Since the release of such affordable motion 
sensors, automatic detecting abnormality or incorrectness in 
actions like physical exercises and daily activities becomes one 
of the emerging topics of transdisciplinary Artificial Intelligence 
(AI). The depth modality of the Kinect sensor has been 
attempted for abnormal action detection by [8]. Nonetheless, 
automatic monitoring and evaluating the rehabilitation exercises 
in the skeleton data modality are still not tackled well. 

The skeleton modality of Kinect could be represented as a 
sequence of human joint locations formed as 2D or 3D 
coordinates. By analyzing the joint movement patterns thereof, 
abnormal actions can then be detected. Prior work of using 
skeleton data for assessing rehabilitation exercise utilize 
handcrafted geometrical features or Deep Learning (DL) models 
[9]. The capability of separating incorrect actions from correct 
ones are limited in existing methods as they do not consider the 
spatial relationships among the skeleton joints that are essential 
for human action understanding. In the human activity 
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recognition domain, Graph Convolutional Network (GCN) have 
achieved encouraging performance on classifying different 
human activities [10] [11] [12]. Yet, it has not been adopted for 
the task of abnormal action detection. 

In this article, we propose a novel neural representation 
approach by using the GCN for skeleton-based action 
abnormality detection. As illustrated in Fig. 1, the skeleton 
modality is represented as a sequence of skeleton graph. Since 
GCN shows effective representation ability in skeleton-based 
action recognition, we adopted three graph convolution kernels 
proposed in [10] as the convolution traversal rules for the 
proposed method. For abnormal action detection, inspired by the 
work of that the probability distribution before the SoftMax 
layer contains more information than the result of SoftMax 
classifier [13], we utilize the probability distribution before the 
SoftMax layer to generate evaluation scores. The evaluation 
scores are then used for abnormality detection with a proper 
threshold value. The main contributions of this paper are as 
below: 

• For action abnormality detection, we propose a novel 
representation method that uses a GCN model to classify 
if an exercise is abnormal or normal.  

• To verify the representation ability of the proposed 
method, we test it on the UI-PRMD dataset [14] for the 
task of abnormality detection. 

• Our proposed method is one the first attempts utilizing 
GCN for the skeleton-based action abnormality 
detection, which could have plenty of real-world 
applications given the superior abnormality detection 
performance over the existing methods. 

II. RELATED WORK 
We now review state-of-the-art work on skeleton-based 

action abnormality detection from both perspectives of 
algorithms and datasets. We propose our algorithm and conduct 
experiments based on the previous literature. 

A. Action Abnormality Detection Algorithms  
Action abnormality detection is closely related to the field of 

Human Action Evaluation (HAE) that aims to design 
computation models and evaluation methods to automatically 
assess the quality of human motions. Qing et al. [9] surveyed the 
potential applications in domains like physical rehabilitation, 
assistive living for elderly people, skill training, and sports 
activity scoring. It turns out that HAE relies on human tracking, 
human motion recognition, action segmentation, and efficient 
methods for evaluate the quality of the action performance. As 
far as we know, there are very few works that investigate the 
standard evaluation methods of action abnormality detection 
algorithms. Following the review of [9], we investigate existing 
action evaluation methods from two categories: handcrafted 
feature representation methods and deep learning feature 
representation methods. 

Handcrafted feature representation methods reply on 
constructing effective geometrical feature vectors that encode 
the skeleton data of rehabilitation exercises. Traditionally, 
Hidden Markov Model (HMM) was popularly utilized as in the 

work of [15], which evaluates human actions based on 
geometric features of the skeleton data. The training process of 
the HMM model in [15] is supervised by the abnormality degree 
(on the scale of 1 to 5) evaluated by a professional physiatrist. 
Various traditional methods based on HMM were compared in 
[16] and their performance have been surpassed by DL models 
according to the experimental results on various datasets [17]. 
For example, a DL framework was proposed to encode the 
skeleton exercise data, which is supervised by a quality score 
function [18]. Common DL models like Convolutional Neural 
Network (CNN) and Long Short-Term Memory (LSTM) have 
been attempted in [19] for gesture correctness estimation. 
However, the dataset in [19] has not yet been publicly accessible 
by the time of this study. For HAE, existing methods are either 
supervise by human labels [15] or an arbitrary score function 
[18]. On one hand, training with the subjective human labels will 
make the evaluation results remain subjective and unacceptable 
for patients. One the other hand, supervised the training process 
with a score function has a redundant issue as the results could 
already be delivered by the evaluation function. Our method is 
different from these existing methods that are supervised either 
by the arbitrary function score or the abnormality degree. 

B. Skeleton-Based HAE Datasets 
Very few works have reviewed the datasets relating to HAE. 

Ahad et al. [20] briefly collected some HAR datasets, but most 
of the surveyed datasets are focusing on action recognition 
instead of abnormality detection. Due to the recent popularity of 
the Kinect sensor for human action analysis, we further 
investigate the evaluation methods of representative 
benchmarks that use Kinect for skeleton retrieval. 

One of the public HAE datasets is the SPHERE dataset [16] 
that includes three sub-datasets: Staircase2014, Walking2015 
and SitStand2015. SPHERE is originally collected for a 
competition and just provide the body center data instead of the 
whole skeleton. Another dataset called EJMQA including four 
simple actions was collected by [15], which is a similar dataset 
with SPHERE [16]. A fitness exercise dataset called UI-PRMD 
[14] that includes both correct and incorrect actions is collected 
for evaluating HAE algorithms. Since the UI-PRMD dataset 
[14] did not provide a standard evaluation method, [18] 
proposed the quality score function, which makes it meaningless 
to train a representation model as the results already could be 
inferred by the quality score function. The lack of standard 
evaluation methods also makes UI-PRMD hard to be compared 
by a similar work in [21]. Unlike the 10 incorrect exercises in 
UI-PRMD that are simulated by the ones that perform the other 
correct motion sequences, the AHA-3D dataset [22] is 
performed by both elderly and young people but the AHA-3D 
dataset is not publicly accessible by the date of this work. The 
evaluation method in [22] is per frame but not in terms of the 
whole action sequence. 

III. PROPOSED METHOD 
In this section, we introduce our skeleton-based action 

abnormality detection method. As Fig. 2 shows, we adopt a 
graph convolutional network to learn a representation of the 
skeleton data and then infer the severity level of abnormality 
based on the feature distribution before the SoftMax Layer 
determined by the GCN model. 
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Fig. 2. Illustration of the training model. There are 9 ST-GCN blocks (B1-B9). The three numbers of each block represent the number of input channels, the number 
of output channels and the stride, respectively. GAP represents the global average pooling layer.

A. Data Structure and Notation 
For a particular exercise, using the skeleton retrieval sensor, 

we could record a sequence of skeleton frames corresponding to 
the exercise performed as shown in Fig. 1. Give 𝑁𝑁 repetitions of 
an exercise performed by all the subjects in a dataset, it could be 
denoted as 𝑆𝑆 = �𝑆𝑆(𝑖𝑖) � 𝑖𝑖 = 1, … ,𝑁𝑁}, where 𝑆𝑆(𝑖𝑖) is a sequence of 
skeleton frames that characterize the exercise. A skeleton frame 
is consisted of a set of skeleton joints which represent body parts 
like head, spine, hands, etc. For a skeleton frame with 𝐽𝐽 skeleton 
joints observed at time t, let us represent it as 𝑆𝑆𝑡𝑡

(𝑖𝑖) =
�𝑆𝑆𝑡𝑡1

(𝑖𝑖), … , 𝑆𝑆𝑡𝑡𝑡𝑡
(𝑖𝑖), … , 𝑆𝑆𝑡𝑡𝑡𝑡

(𝑖𝑖)� , where 𝑆𝑆𝑡𝑡𝑡𝑡
(𝑖𝑖)  has some attributes 

corresponding to its position and orientation features. The 
position of joint 𝑆𝑆𝑡𝑡𝑡𝑡

(𝑖𝑖) usually has 3 attribute features denoted as 
(x, y, z), which indicates the 3D cartesian coordinates of the 
joint. Whereas the orientation of joint 𝑆𝑆𝑡𝑡𝑡𝑡

(𝑖𝑖)  is represented as 
(𝑋𝑋,𝑌𝑌,𝑍𝑍) , where 𝑋𝑋 , 𝑌𝑌  and 𝑍𝑍  could be transformed to 
corresponding angular values of yaw, roll and pitch, 
respectively. In the experimentational setting, we will 
investigate the contribution of these features of different sensors. 

B. Graph Convolutional Network 
1) Graph construction: The raw skeleton data in one frame 

is always streamed as an ordered sequence of vectors. Each 
vector represents the position and orientation attributes of the 
corresponding human joint. A complete exercise repetition 
contains multiple frames with varied lengths for different 
repetitions. We adopt a spatiotemporal graph to model the 
structured information among these joints along both the spatial 
and temporal dimensions. The structure of the graph is similar 
with that of ST-GCN [10]. Fig. 1 give an example of the 
constructed spatiotemporal skeleton graph, where the joints are 
represented as vertexes and their natural connections in the 
human body are represented as spatial edges (the black lines in 
Fig. 1). For the temporal dimension, the corresponding joints 
between two adjacent frames are connected with temporal 
edges (the orange lines in Fig. 1). The position and orientation 
features of each joint are set as the attribute of the 
corresponding vertex. The skeleton graph at time 𝑡𝑡  could be 
symbolized as 𝜗𝜗𝑡𝑡 = {𝜐𝜐𝑡𝑡 , 𝜀𝜀𝑡𝑡} , where 𝜐𝜐𝑡𝑡  denotes the skeleton 
joints and 𝜀𝜀𝑡𝑡 demotes the skeleton bones, respectively. In this 
graph, the node set 𝜐𝜐𝑡𝑡 = {𝜐𝜐𝑡𝑡𝑡𝑡|𝜐𝜐𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑡𝑡

(𝑖𝑖), 𝑗𝑗 = 1, … , 𝐽𝐽} contains 
all joints in the skeleton sequence. 

 
2) Convolutional operation: To represent the sampling area 

of convolutional operations, a neighbor set of a node 𝜐𝜐𝑡𝑡𝑖𝑖  is 
defined as 𝐵𝐵�𝜐𝜐𝑡𝑡𝑡𝑡� = {𝜐𝜐𝑡𝑡𝑡𝑡�𝑑𝑑�𝜐𝜐𝑡𝑡𝑡𝑡 , 𝜐𝜐𝑡𝑡𝑡𝑡� ≤ 𝐷𝐷�,  where 𝐷𝐷  is the 
minimum path length of 𝑑𝑑�𝜐𝜐𝑡𝑡𝑡𝑡 , 𝜐𝜐𝑡𝑡𝑡𝑡�. The right sketch in Fig. 3 
shows this strategy, where × represents the center of gravity of 
the skeleton. The sampling area 𝐵𝐵�𝜐𝜐𝑡𝑡𝑡𝑡�  is enclosed by the 
curve. In detail, the strategy empirically uses 3 spatial subsets: 
the vertex itself (the green node in Fig. 3); the centripetal 
subset, which contains the neighboring vertexes that are closer 
to the center of gravity (the blue node in Fig. 3); the centrifugal 
subset, which contains the neighboring vertexes that are farther 
from the gravity center (the yellow node in Fig. 3). 
 

   
Fig. 3. Illustration of the spatial mapping strategy. Different colors nodes 
denote different subsets. 

Suppose there are fixed number of L subsets in the 𝐵𝐵�𝜐𝜐𝑡𝑡𝑡𝑡�, 
every neighbor set will be labelled numerically with a mapping 
ℎ𝑡𝑡𝑡𝑡:𝐵𝐵�𝜐𝜐𝑡𝑡𝑡𝑡� → {0, … ,𝐿𝐿 − 1}.  Temporally, the neighborhood 
concept is extended to sequentially connected joints as 
𝐵𝐵�𝜐𝜐𝑡𝑡𝑡𝑡� = {𝜐𝜐𝑞𝑞𝑡𝑡�𝑑𝑑�𝜐𝜐𝑡𝑡𝑡𝑡 , 𝜐𝜐𝑡𝑡𝑡𝑡� ≤ 𝐾𝐾, |𝑞𝑞 − 𝑡𝑡| ≤ 𝛤𝛤/2�, where Γ is the 
temporal kernel size that controls the temporal range of the 
neighbor set. Then the graph convolution could be computed as: 

 𝑓𝑓out(𝜐𝜐𝑡𝑡𝑡𝑡) = ∑ 1
𝑍𝑍𝑡𝑡𝑡𝑡(𝑣𝑣𝑡𝑡𝑡𝑡)𝜐𝜐𝑡𝑡𝑡𝑡∈𝐵𝐵�𝜐𝜐𝑡𝑡𝑡𝑡� 𝑓𝑓𝑖𝑖𝑖𝑖(𝑣𝑣𝑡𝑡𝑡𝑡)w(ℎ𝑡𝑡𝑡𝑡(𝑣𝑣𝑡𝑡𝑡𝑡)) (1) 

Normal or
abnormal

Gravity Center
Convolutional Node
Centripetal subset
Centrifugal subset
Convolutional area
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where 𝑓𝑓𝑖𝑖𝑖𝑖: 𝑣𝑣𝑡𝑡𝑡𝑡 → 𝑅𝑅𝑐𝑐  is the feature map that gets the attribute 
vector of 𝑣𝑣𝑡𝑡𝑡𝑡 , w(ℎ𝑡𝑡𝑡𝑡(𝑣𝑣𝑡𝑡𝑡𝑡))  is a weight function 
w �𝜐𝜐𝑡𝑡𝑡𝑡 , 𝜐𝜐𝑡𝑡𝑡𝑡�:𝐵𝐵�𝑣𝑣𝑡𝑡𝑡𝑡� → 𝑅𝑅𝑐𝑐  that could be implemented by 
indexing a tensor of (𝑐𝑐, 𝐿𝐿)  dimension. 𝑍𝑍𝑡𝑡𝑡𝑡(𝑣𝑣𝑡𝑡𝑡𝑡) =
�{𝑣𝑣𝑡𝑡𝑡𝑡|ℎ𝑡𝑡𝑡𝑡(𝑣𝑣𝑡𝑡𝑡𝑡) = ℎ𝑡𝑡𝑡𝑡(𝑣𝑣𝑡𝑡𝑡𝑡)}� is a normalization term that 
equals to the cardinality of the corresponding subset. 
 

3) Implementation: The implementation of graph-based 
convolution is not as straightforward as 2D or 3D convolution. 
The feature map of the network could be represented by a tensor 
of (𝐶𝐶,𝑇𝑇, 𝐽𝐽) dimensions, where 𝐶𝐶  denotes the number of 
attributes of the joint vertex. With the specific partitioning 
strategy determined, it could be represented by a 𝐽𝐽 × 𝐽𝐽 
adjacency matrix 𝑨𝑨 with its elements indicating if a vertex 𝑣𝑣𝑡𝑡𝑡𝑡 
belongs to a subset of 𝐵𝐵�𝑣𝑣𝑡𝑡𝑡𝑡� . The graph convolution is 
implemented by performing a 1 × 𝛤𝛤 classical 2D convolution 
and multiplies the resulting tensor with the normalized 
adjacency matrix 𝜦𝜦−

1
2𝑨𝑨𝜦𝜦−

1
2  on the second dimension. With 𝐿𝐿 

distance partitioning strategies ∑ 𝜜𝜜𝑙𝑙𝐿𝐿
𝑙𝑙=1 ,  Equation 1 could be 

transformed into: 

 𝑓𝑓out(𝜐𝜐𝑡𝑡𝑡𝑡) = ∑ 𝚲𝚲𝑙𝑙
−12𝚨𝚨𝑙𝑙𝚲𝚲𝑙𝑙

−12𝐿𝐿
𝑙𝑙=1 𝑓𝑓in𝐖𝐖𝑙𝑙⨀𝐌𝐌𝑙𝑙  (2) 

where 𝚲𝚲𝑙𝑙
𝑡𝑡𝑡𝑡 = ∑ (𝐀𝐀𝑙𝑙

𝑡𝑡𝑡𝑡) + 𝛼𝛼𝑡𝑡
𝑡𝑡  is a diagonal matrix with 𝛼𝛼  set to 

0.001 to avoid empty rows in the diagonal matrix. 𝐖𝐖𝑙𝑙 is a weight 
tensor of the 1 × 1  convolutional operation with 
(𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡 , 1, 1)  dimensions, which represents the weighting 
function of Equation 1. 𝐌𝐌𝑙𝑙  is an attention map with the same 
size of 𝚨𝚨𝑙𝑙 , which indicates the importance of graph nodes. ⨀ 
denotes the element-wise product between two matrixes. 

C. Network Architecture 
The convolution for the temporal dimension is the same as 

ST-GCN, i.e., performing the 1 × Γ convolution on the 𝐶𝐶 × 𝑇𝑇 ×
𝐽𝐽  feature map. Both the spatial GCN and temporal GCN are 
followed by a batch normalization (BN) layer and a ReLU layer. 
As Fig. 4 shows, one basic ST-GCN block is the combination of 
one spatial GCN (Convs), one temporal GCN (Convt) and an 
additional dropout layer with the drop rate set as 0.5 to avoid 
overfitting. To stabilize the training, a residual connection is 
added for each block. 

   
Fig. 4. Illustration of the ST-GCN block. Convs represents the spatial GCN, 
and Convt represents the temporal GCN, both of which are followed by a BN 
layer and a ReLU layer. Moreover, a residual connection is added for each 
block. 

The ST-GCN model is a stack of these basic blocks, as 
shown in the middle of Fig. 2. There are 9 blocks in total. The 
first three layers have 64 channels for output. The follow three 
layers have 128 channels for output. And the last three layers 

have 256 channels for output. These layers have 9 temporal 
kernel size. The strides of the 4-th and the 7-th temporal 
convolution layers are set to 2 as pooling layer. data BN layer is 
added at the beginning to normalize the input data. A global 
average pooling layer is performed at the end of the ST-GCN 
blocks to pool feature maps of different samples to a 256-
dimension feature vector. The last layer of the model is a 2D 
convolutional layer that transfer the 256-dimension feature 
vector to a 2D vector as we labelled the data as normal or 
abnormal. Finally, we feed it to a SoftMax classifier that will 
classify an action as normal or abnormal, before which we use 
the trained model to generate an evaluation score. 

D. Optimization 
The learning process of the weights Θ of the ST-GCN model 

𝐺𝐺  is supervised by the binary clinical label 𝑦𝑦  with a cross-
entropy loss as: 

 arg min
Θ

∑ −  ∑𝑦𝑦(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎(𝐺𝐺(Θ, 𝑆𝑆(𝑖𝑖))))𝑁𝑁
𝑖𝑖=1  (3) 

where 𝐺𝐺(Θ, 𝑆𝑆(𝑖𝑖)) represents the graph convolutional operation 
defined in Equation 2, which is expanded to temporal dimension 
with the kernel size set to 1. 𝜎𝜎  is the Softmax function that 
transfer the recognition results to human understandable format. 

We use the stochastic gradient descent to optimize the model 
with a base learning rate set to 0.1. The learning rate will be 
decayed by 0.1 at the epochs of 10, 50 and 100 throughout the 
total 200 epochs. The training process will be terminated when 
the model converges at the accuracy of 100%. To infer the action 
evaluation score, we retrieve the first dimension of the output 
before the SoftMax layer of the model and transfer it to a range 
of [0,1] where 0 refers to the worst exercise quality and 1 
indicates the best exercise quality by using a sigmoid function 
defined as: 

 𝑓𝑓score(𝑆𝑆(𝑖𝑖)) = 1

1 + 𝑒𝑒−𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡(𝑆𝑆(𝑖𝑖))
 (4) 

IV. EXPERIMENTS 
In this section, we introduce the detailed implementation of 

our proposed method on the UI-PRMD dataset in terms of the 
human action abnormality detection. We also compare features 
which feature and which motion sensor could be more effective 
for the abnormality detection task. 

A. Dataset 
Based on the review of existing benchmark dataset in 

Section II, we use the UI-PRMD dataset [14] in our experiment. 
UI-PRMD consists of skeletal data collected from 10 healthy 
subjects with every subject performing 10 repetitions of 10 
rehabilitation exercises like deep squat, hurdle step, and sit to 
stand as illustrated in Table I. Subjects performed every exercise 
in both correct and incorrect manners, i.e., simulating 
performance by patients with musculoskeletal constraints. The 
data were collected with two sensors namely Kinect v2 and 
Vicon optical tracking system. Both sensors provide skeleton 
data with position (3D cartesian coordinates) and orientation 
(angular data) features. As Fig. 5 shows, the skeleton structures 
of Kinect v2 and Vicon tracking system has 22 and 39 joint 

Residual connection

134

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 30,2021 at 07:36:54 UTC from IEEE Xplore.  Restrictions apply. 



nodes, respectively. Since the dataset has inconsistent samples 
caused by measurement errors and subjects performing the 
exercise with incorrect limbs, the dataset was transferred to a 
consistent version by [18]. We use the consistent data of the 
Kinect and Vicon sensors that have 1326 repetitions. The first 
purpose of using this dataset is to compare the HAE ability of 
our model with the one proposed by [18]. Kinect v2 has been 
considered as less accurate than Vicon optical tracking system. 
Given data are available from both sensors, the second purpose 
is to compare whether Kinect v2 could be better than Vicon 
optical tracking system for the human action analysis. 

TABLE I.  EXERCISES IN THE UI-PRMD DATASET 

Order  Exercise 

E1 Deep squat  

E2 Hurdle step  

E3 Inline lunge  

E4 Side lunge 

E5 Sit to stand 

E6 Standing active straight leg raise  

E7 Standing shoulder abduction  

E8 Standing shoulder extension 

E9 Standing shoulder internal–external rotation  

E10 Standing shoulder scaption 
 

  
Fig. 5. The skeleton structures of Kinect v2 (22 joints) and Vicon optical 
tracking system (39 joints). 

B. Evaluation Criterion 
To test the representation power of the proposed GCN 

model, we adopt the concept of separation degree (SD) that is 
proposed in [18]. For a pair of positive numbers 𝑥𝑥 and 𝑦𝑦, their 
SD could be defined as 𝑆𝑆𝐷𝐷(𝑥𝑥, 𝑦𝑦) =  𝑥𝑥−𝑦𝑦

𝑥𝑥+𝑦𝑦
 ∈ [−1,1] . Then the 

separation degree between two positive sequences 𝒙𝒙 = (𝑥𝑥1,
𝑥𝑥2, … , 𝑥𝑥𝑡𝑡) and 𝒚𝒚 = (𝑦𝑦1 , 𝑦𝑦2, … , 𝑦𝑦𝑡𝑡) could be defined by: 

 𝑆𝑆𝐷𝐷(𝒙𝒙,𝒚𝒚) = 1
𝑡𝑡𝑖𝑖

∑ ∑ 𝑆𝑆𝐷𝐷(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑡𝑡)𝑖𝑖
𝑡𝑡=1

𝑡𝑡
𝑖𝑖=1  (5) 

We define the action abnormality detection as a binary 
classification problem to classify exercise repetitions to correct 
and incorrect groups. To evaluate the detection performance, we 
examine the classification accuracy derived from the confusion 
matrix as shown in Table II. 

TABLE II.  CONFUSION MATRIX OF BINARY CLASSIFICATION  

 1 
(Predicted) 

0 
(Predicted) 

1 
(Actual) 

True Positive 
(TP) 

False Negative 
(FN) 

0 
(Actual) 

False Positive 
(FP) 

True Negative 
(TN) 

 

Based on the confusion matrix, the overall accuracy could be 
calculated as: 

 Accuracy  =  TP + TN
TP + TN + FP + FN

 (6) 

C. Results and Analysis 
Following the experimental setting in [18], we record the 

training accuracy of all exercises from the UI-PRMD dataset as 
shown in Table III. The training accuracy indicates that although 
Kinect v2 sensor might have more noise than the Vicon sensor, 
it still could be good enough for exercise quality evaluation. 
From the average accuracy, the accuracy of Kinect v2 (99.59%) 
is even better than that of Vicon (97.21%). It is also worth to 
note that the results of angular orientation attributes on both two 
sensors outperform the results of their 3D position attributes. 

TABLE III.  TRAINING ACCURACIES OF EXERCISES ON UI-PRMD 

Order 
ID 

Training Accuracy (%) 
Kinect v2 Vicon Tracking System 

3D Position Angular 3D Position Angular 

E1 100.00  100.00  82.78  100.00  

E2 100.00  100.00  96.36  90.00  

E3 99.02  98.04 86.27  100.00  

E4 93.57  100.00  56.43  92.86  

E5 92.86  99.40  54.17  100.00  

E6 100.00  100.00  100.00  97.95  

E7 98.41  98.41  99.21  100.00  

E8 100.00  100.00  90.48  91.27  

E9 92.50  100.00  67.50  100.00  

E10 50.00  100.00  85.19  100.00  

Average 92.64  99.59  81.84  97.21  
 

To validate the effectiveness of proposed method, we 
calculate the SD of each exercise that use different data 
attributes as shown in Table IV, which is compared with that of 
the DL framework proposed in [18]. The average separation 
degree of [18] for the inter-subject case is 0.515, while our 
method achieved a separation degree of 0.768 by using the same 
data that is the angular attributes of the Vicon sensor. From the 

Kinect v2 Vicon tracking system

135

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 30,2021 at 07:36:54 UTC from IEEE Xplore.  Restrictions apply. 



SD results, we could see that our method achieves a significant 
improvement over the best model named Log-likelihood GMM 
in [18]. We also achieves an even higher separation degree 
(0.808) by using the angular attributes of Kinect v2 sensor. 
These results indicate that Kinect v2 sensor could be effective 
for exercise evaluation as it is better than the Vicon in terms of 
both the 3D position and angular orientation attributes. 

TABLE IV.  SEPARATION DEGREE OF EACH EXERCISE ON UI-PRMD 

Order 
ID 

Separation Degree 
Kinect v2 Vicon Tracking System 

3D Position Angular 3D Position Angular 

E1 0.745  0.895  0.310  0.926  

E2 0.797  0.961  0.720  0.610  

E3 0.639  0.867  0.406  0.806  

E4 0.561  0.736  0.005  0.577  

E5 0.527  0.830  0.230  0.842  

E6 0.865  0.764  0.579  0.670  

E7 0.734  0.701  0.681  0.895  

E8 0.723  0.697  0.494  0.659  

E9 0.033  0.808  0.209  0.737  

E10 0.060  0.823  0.253  0.904  

Average 0.584  0.808 0.378 0.768 
 

To have a closer observation of the result, as Fig. 6 shows, 
we visualize the quality evaluation values for exercise E1 of UI-
PRMD by using the 3D position features of Kinect v2. It is 
noticeable that the correct and incorrect (follow the description 
in [18]) repetitions are clearly classified by using the evaluation 
score transferred with Equation 4 from the abnormality 
detection results. While in the result of [18], most correct and 
incorrect pairs could not be clearly separated as most of the 
incorrect repetitions have an evaluation score of around 0.9 
given that 1 is the fully correct score. From Fig. 6, with our 
proposed abnormality detection method, we could see that the 
scores of correct repetitions are all over 0.6, whereas the scores 
of incorrect repetitions are all below the threshold of 0.5. 

 
Fig. 6. Quality evaluation values for exercise E1 of UI-PRMD by using the 
3D position features (S_D=0.745). 

V. CONCLUSION AND FUTURE WORK 
To conclude, this paper introduced an abnormality detection 

method that adopted a graph convolutional network to model the 
skeleton exercise data. Meanwhile, it also investigated the 
ability of different motion sensors for human action analysis. To 
infer the correctness of an action, a score of the abnormality was 
retrieved from the probability distribution before the SoftMax 
layer of the proposed GCN model. With a threshold selected, it 
uses the retrieved score to infer whether an exercise is correctly 
performed. According to the experimental results on the 
benchmark dataset named UI-PRMD [14], our method 
significantly improves the results of [18] in terms of the 
separation degree. While we also found that the Kinect v2 sensor 
performed better than the Vicon optical tracking system in terms 
of both position and angular features.  

Although our method shows the potential for detecting 
abnormal actions with an evaluation score, it might be lack of 
modelling the expert knowledge in the field of rehabilitation 
therapy. It means that the involvement of domain knowledge 
could make such data-driven methods more explainable. In the 
future, we will focus on this issue by developing more 
interpretable methods and expand the experiments to real-word 
exercise data performed by real rehabilitation patients.  
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