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EGCN++: A New Fusion Strategy for Ensemble
Learning in Skeleton-Based Rehabilitation

Exercise Assessment
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and Chang Wen Chen , Fellow, IEEE

Abstract—Skeleton-based exercise assessment focuses on eval-
uating the correctness or quality of an exercise performed by a
subject. Skeleton data provide two groups of features (i.e., position
and orientation), which existing methods have not fully harnessed.
We previously proposed an ensemble-based graph convolutional
network (EGCN) that considers both position and orientation
features to construct a model-based approach. Integrating these
types of features achieved better performance than available meth-
ods. However, EGCN lacked a fusion strategy across the data,
feature, decision, and model levels. In this paper, we present an
advanced framework, EGCN++, for rehabilitation exercise assess-
ment. Based on EGCN, a new fusion strategy called MLE-PO
is proposed for EGCN++; this technique considers fusion at the
data and model levels. We conduct extensive cross-validation ex-
periments and investigate the consistency between machine and
human evaluations on three datasets: UI-PRMD, KIMORE, and
EHE. Results demonstrate that MLE-PO outperforms other EGCN
ensemble strategies and representative baselines. Furthermore,
the MLE-PO’s model evaluation scores are more quantitatively
consistent with clinical evaluations than other ensemble strategies.

Index Terms—Human action evaluation, model-based fusion,
ensemble learning.

I. INTRODUCTION

PHYSICAL therapists often use rehabilitation exercises to
aid in the recovery and prevention of various musculoskele-

tal disorders (e.g., tendonitis, epicondylitis, and mechanical back
syndrome). However, patients can rarely afford the expense of
routine rehabilitation therapy [1]. People with musculoskeletal
disorders are instead encouraged to engage in cost-effective
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home-based treatment under a rehabilitation therapist’s super-
vision [2]. Some patients struggle to adhere to home-based
exercise regimens due to a lack of immediate therapist feedback.
This issue can impede therapeutic efficacy and increase overall
healthcare expenditure [3]. Scholars have thus researched the use
of vision sensors and wearable sensors for home-based physi-
cal rehabilitation and health monitoring [4], [5]. When these
technologies were introduced, wearable sensors such as inertial
measurement units (IMUs) and robot-aided devices with some
degrees of freedom were tested in rehabilitation treatments [6],
[7]. Wearable sensors have also been combined with vision
sensors for this purpose [8]. Although IMU-based methods are
promising and have demonstrated good motion data quality [9],
they typically must be calibrated for each use and are not as
convenient as vision sensors [10].

Since the release of affordable motion sensors such as Kinect,
some home-based physical therapy systems [11], [12], [13]
using a sensor’s human body skeleton data have been developed
to assess the accuracy of rehabilitation patients’ exercises. These
evaluation systems can identify barriers to improving patients’
exercise adherence, which motivates patients to complete the
exercises as therapists would [14]. The Kinect sensor contains
various data-streaming channels such as skeleton, depth, and
RGB [15]. In addition to the skeleton channel, the depth channel
has been applied for abnormality detection by [16]. The RGB
channel can be used as one particular way to get an RGB feed,
which can be regarded as video-based action assessment. Prior
video-based action assessment works usually tackle Olympic
sports based on the RGB video data [17], [18], [19] or both
video and 2D pose data [20], [21]. Skeleton data can be more
informative than 2D pose data; as such, the current study en-
riches the literature on exercise evaluation by using the former
type.

Skeleton data are streamed as a sequence of skeleton frames,
with each containing several skeleton joints. Each joint has two
feature groups as shown in Fig. 1: a 3D position and a 3D ori-
entation (i.e., the joint angle). Traditionally, feature engineering
methods calculate detailed joint information such as the joint
angle [22] and changes in relative joint positions [23] to guide
skeleton estimation. Although using features calculated or trans-
formed from raw skeleton data can reduce complexity, doing so
may not capture all necessary information [24]. These methods
are easily interpretable for abnormality detection but come with
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Fig. 1. Visualization of two skeleton features from UI-PRMD and KIMORE
datasets. Upper figures: 3D position feature of skeleton joints (circles). Lower
figures: 3D orientation feature of skeleton joints (coordinates on the circles). We
aim to use both feature types for exercise assessment.

inter- and intra-subject bias (i.e., each subject might display their
own correct performance at different rehabilitation stages). As
for the characteristics of skeleton data, the two skeleton features
are structurally homogeneous but have heterogeneous physical
meanings. The position feature represents the global movement
of exercise repetition, which is widely used for action recogni-
tion [25]. The orientation feature describes the local attributes
of certain skeleton joints; it is relatively more independent.
These two feature groups are mutually inconvertible. Exercise
abnormalities can be discovered by analyzing global and local
skeleton patterns accordingly [26], [27].

However, rehabilitation exercise assessment with skeleton
data continues to face difficulties. First, methods such as [28],
[29], [30] and [31] mainly rely on one modal setting (i.e., using
the orientation feature of skeleton data) but do not capitalize on
both position and orientation features. We previously proposed
an ensemble-based graph convolutional network (EGCN) [32]
framework to fuse these skeleton feature groups at different
scales (i.e., early, mid, or late fusion), but this network does
not integrate the benefits of each. Second, existing methods are
limited in their capability to distinguish incorrect and correct
actions: current approaches are either based on fixed geometric
features [29], [33] or basic deep learning models such as a
convolutional neural network (CNN), long short-term mem-
ory [34], or graph convolutional network (GCN) [30]. Several fu-
sion strategies in EGCN have shown encouraging performance.
Some could be combined to realize performance improvements.
Third, the evaluation metrics (i.e., involving separation degree
and distance) used in [28], [29], [30] have not been used with
EGCN [32] to determine a model’s prediction ability, which
is integral to machine assessment. Metrics such as Euclidean
distance and correlation, which indicated the consistency be-
tween human and machine assessments in [31], were not applied
in [32]. An optimal model should be predictive and consistent
with human evaluation.

An earlier version of this work appeared in [32]. To further
facilitate skeleton-based exercise assessment with position and
orientation features, we propose EGCN++, which tackles the

aforementioned challenges. Besides providing more technical
details in the methodology, this paper offers novel contributions:
it presents a new ensemble strategy, more extensive experi-
ments, and investigations of consistency with human evaluation.
For the new ensemble strategy, we recognize the advantages
of the data-level ensemble and combine this technique with
the model-level ensemble (MLE), leading to a fusion strategy
called MLE-PO that improves the previous MLE’s results. In
the more extensive experiments, we expand prior tests of the
UI-PRMD [35] and KIMORE [36] datasets to an additional
random division protocol and test all proposed methods on a new
dataset, EHE [31], for comparison with state-of-the-art base-
lines. We also revisit the suitability of evaluation criteria in [28],
[29] and report experimental results. Based on findings from
experiments with the three latest public datasets, UI-PRMD [35],
KIMORE [36], and EHE [31], the proposed MLE-PO strategy
in our EGCN++ significantly outperforms other ensemble tech-
niques and state-of-the-art GCN-based single-modal methods.
Regarding our comparison with human evaluation, we provide
a thorough quantitative assessment of the consistency between
models’ evaluation and human evaluation with datasets for
which human evaluation results are available. Evaluation scores
are additionally visualized and compared.

The remainder of this paper is organized as follows. Section II
introduces related work. In Section III, we detail the proposed
EGCN++ framework. Section IV provides experimental results
for three benchmark datasets with ablations, comparisons with
state-of-the-art methods, and runtime analysis. Section V dis-
cusses future directions, followed by a conclusion in Section VI.

II. RELATED WORK

In this section, we review prior work on skeleton-based
rehabilitation exercise assessment, graph representation, and
ensemble learning.

A. Skeleton-Based Action Assessment

In this subsection, we briefly review related work in terms of
datasets and algorithms. Some action evaluation datasets were
reviewed in [37], [38], [39]. Datasets such as UI-PRMD [35] and
KIMORE [36] are relevant to our study whereas other surveyed
datasets either focus on action classification or are not skeleton-
based. UI-PRMD used Vicon and Kinect v2 sensors to track
repetitions of 10 exercises from 10 healthy subjects to explore
good action evaluation models. To build systems to remotely
monitor physical rehabilitation, KIMORE data were collected
from 78 subjects (44 healthy people and 34 patients with motor
dysfunction) via the Kinect v2 sensor. Other representative
datasets include SPHERE [33], AHA-3D [40], LAM [41], and
EHE [31]. The SPHERE dataset provides information on the
body center rather than the entire skeleton, making it somewhat
irrelevant for whole-skeleton modeling. The AHA-3D and LAM
datasets are not publicly accessible as of this writing. The EHE
dataset contains routine morning exercise repetitions from 25
residents of an elderly home, collected in a natural setting using
the Kinect v2 sensor. KIMORE and EHE data were obtained
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from real patients and facilitate clinical evaluation. Such assess-
ment is integral when determining algorithms’ effectiveness.

Traditional machine learning models exemplify early algo-
rithms. Multiple hidden Markov models were compared in [33]
based on SPHERE. Parmar and Morris [41] used conventional
algorithms (e.g., support vector machine, AdaBoosted tree,
multi-layer neural network, and dynamic time warping) to eval-
uate exercise quality. The AdaBoosted tree yielded optimal
performance. João et al. [40] devised a per-frame exercise evalu-
ation method but did not consider the whole skeleton sequence,
which was tested on the AHA-3D dataset. Elkholy et al. [42]
collected a dataset similar to SPHERE [33] and proposed a
hidden Markov model-based method with less computational
overhead than that developed by [33]. The training process
in [42] is supervised by the score of the abnormality degree (on
a scale of 1–5) from a professional specialist’s evaluation. More
recently, a deep learning framework [28] was created to encode
skeleton data from the UI-PRMD dataset, supervised by a quality
score function. The approach in [28] outperformed certain CNN-
and long short-term memory-based models. GCN was featured
in [30], [31] and appeared superior to other methods [28], [29].

Approaches to exercise assessment tend to be based on one
of two principles: 1) regression, in which case the strategies are
supervised by either a score function [28] or clinical scores [42];
or 2) binary classification [30], [31], [32]. Input from clinical
experts cannot fully determine assessment validity [43]; dis-
crepancies can arise between experts’ evaluations and patients’
self-assessment [44]. Training a model using clinical labels
renders the model evaluation inadequate for patients. At the
same time, supervising the training process with a score function
can be meaningless if a predefined score function has already
delivered results. Our EGCN++ follows the work of [31] and
delivers a numerical evaluation score by using output before the
Softmax classifier. This output is then compared with human
evaluation.

B. Graph Convolutional Network

Since [45], [46], [47] suggested generalizing CNN to rela-
tively sparse graph data structures, GCN has been adopted to
represent skeleton data when classifying human actions [48].
It can capture spatial and temporal attributes. However, when
GCN is employed to present various skeleton data features,
their physical meanings go overlooked. More advanced GCN
models are now available [49], [50], [51] that separately train
the skeleton joint and bone streams and aggregate these results.
The skeleton bone stream is a transformed version of the skeleton
joint position stream. Combining findings from skeleton joints
and skeleton bones can enhance action recognition. Aggregat-
ing multiple types of skeleton representation data [52], [53]
slightly improves action recognition accuracy. [51] works better
when integrating the results of skeleton joint and bone modali-
ties; this method is an ideal baseline for skeleton-based action
recognition.

We will not elaborate on skeleton bone improvements because
exercise assessment is distinct from action recognition: the
former concerns the accuracy of a single action, whereas the

latter classifies multiple actions. We will instead explore effec-
tive ensemble strategies that exploit the position and orientation
features of skeleton data. In this work, we design ensemble tech-
niques based on the basic GCN model in [48] for rehabilitation
exercise assessment. We also explore the effects of changing the
backbone of our EGCN++ using advanced GCN models.

C. Ensemble Learning

Ensemble learning has drawn growing interest due to com-
bining data fusion, data modeling, and data mining into a unified
framework [54]. This learning approach applies to classification
tasks at the basic data level, feature level, decision level, and
model level [54]. A more detailed categorization scheme for
data stream classification appears in [55]. Ensemble classifi-
cation models involve diversity, accuracy, and generalization.
Conflicts between these attributes pose obstacles to better model
performance. Reducing the model complexity and accelerating
training speed constitute additional challenges [54]. Ensemble
learning strategies entail forcing submodels’ diversity or inde-
pendence, focusing on local information, and proposing good
aggregation mechanisms [56]. Traditional machine learning
methods explore ensemble strategies to varying degrees via
algorithms such as AdaBoost, bootstrapping, random forest,
bagging, voting, and stacking. [57].

Deep learning models can benefit conventional ensemble
learning in terms of feature extraction, base learner generation,
and ensemble learner formation [58]. However, the costs of
training multiple base learners and testing the ensemble learner
often increase. Knowledge distillation [59], [60], [61] and en-
semble selection-based aggregation criteria [62], [63] have been
investigated to lower these costs, but smaller models usually
underperform more robust ones. We aim to enhance model
performance but do not address knowledge distillation because
two feature groups are available.

To realize better performance, typical deep learning-based
ensemble methods combine feature-level representations from
different data or add decision-level results [64]. Ensemble meth-
ods also commonly force feature-level diversity or submodel
independence [65]. However, ensuring model diversity remains
difficult and does not guarantee good performance [66]. It is
possible to improve the performance of ensemble classification
models by considering the interconnections and feedback be-
tween levels (e.g., the sample level, feature level, and model
level); however, more research should be conducted with a strong
understanding of data attributes [54].

In this paper, we design an ensemble strategy that integrates
data-level and model-level ensembles. This approach outper-
forms other ensemble strategies proposed in our EGCN++ learn-
ing framework.

III. METHOD

Here, we describe our approach to skeleton-based rehabili-
tation exercise assessment. We first introduce the GCN model
adopted to represent spatial and temporal features within the
position and orientation streams of skeleton data. Next, we
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Fig. 2. (a) Illustration of spatiotemporal graph. (b) Illustration of spatial
sampling strategy for convolutional operation.

describe ensemble strategies proposed in our EGCN++ learning
framework.

Let us denote N samples of exercise repetitions as S =
{S(n)|n = 1, . . . , N}, where each exercise repetition S(n) can
have T skeleton frames collected at regular intervals. Given
a specific skeleton structure with J joints, an exercise repe-
tition can be represented as a set of T × J skeleton joints,
which can be written as S(n) = {S(n)

ti = (P
(n)
ti , O

(n)
ti )| t =

1, . . .T, i = 1, . . . , J}. P (n)
ti = (x, y, z) and O

(n)
ti = (X,Y, Z)

denote the position feature and the orientation feature, respec-
tively. (x, y, z) are 3 attributes featuring the 3D cartesian coordi-
nates of the skeleton position. (X,Y, Z) represents 3 attributes
that can be transformed into the pitch, roll, and yaw values of
the skeleton joint.

Given a sequence of skeleton frames in an exercise repetition
S(n) = (P (n), O(n)), which features (x, y, z) and (X,Y, Z),
let us use g(P (n), θg) and h(O(n), θh) (where θg and θh are
learnable parameters) to denote submodels for learning features
from the skeleton position and orientation streams, respectively.
The goal is to model thePti andOti with proper ensemble strate-
gies that produce higher-quality exercise evaluations through our
EGCN++ framework based on different evaluation metrics.

A. Skeleton Data Representation

Taking inspiration from the GCN proposed in [48], we adopt
a GCN model to represent skeleton joints’ spatiotemporal re-
lationships. Fig. 2(a) displays the constructed spatiotemporal
skeleton graph, where joints are represented as vertexes and
their natural connections are represented as spatial edges. For the
temporal dimension, the black lines connecting corresponding
joints between two adjacent skeleton frames are temporal edges.
The attributes of each graph vertex are composed of the position
and orientation streams of the corresponding skeleton joint.
The skeleton graph at time t can be denoted as ϑt = {υt, εt},
where υt = {υti|υti = S

(n)
ti , i = 1, . . . , J} denotes graph ver-

texes that can be viewed as corresponding skeleton joints. εt
denotes spatial edges representing skeleton bones.

Similar to the convolutional operation in the CNN model,
the traversal rules of graph convolutional operations rely on the
definition of a sampling area. For a graph vertex υti, its sampling

area is defined by a neighbor set N(υti). Fig. 2(b) shows this
strategy, where the dashed line curve encloses the neighbor set
N(υti). This strategy empirically uses 3 spatial subsets: the
vertex denoted by green circles in Fig. 2(b), the centripetal subset
(blue triangles) that contains neighboring vertexes closer to the
center of gravity, and the centrifugal subset (yellow squares)
that contains neighboring vertexes farther from the center of
gravity. Suppose N(υti) has K subsets that can be numerically
indexed with a mapping lti : N(υti) → {0, . . . ,K − 1}. The
convolutional operation of a given graph vertex υti on the spatial
dimension can then be written as

fout =
∑

υtj∈N(υti)

1

Zti (υtj)
fin (υtj)W (l(υtj)), (1)

where υtj represents the graph vertex of a defined neighbor
set, fin(υtj) denotes a mapping used to get the attribute vec-
tor of υtj , and W (l(υtj)) is a weight function W (υti, vtj) :
N(υti) → Rc that can be implemented via a tensor with (c,K)
dimensions. Here, c indicates the feature dimensions.Zti(υtj) =
|{υtk|lti(υtk) = lti(υtj)}| is a normalization term equal to the
cardinality of its corresponding subset.

We use an adjacency matrix A to implement the spatial
convolutional layer of a single skeleton frame. The elements
of A show whether a vertex υtj belongs to one subset of
N(υti). Accordingly, the graph convolution is implemented by
performing a 1× 1 classical 2D convolution and multiplying the
output tensor by a normalized adjacency matrix Λ− 1

2AΛ− 1
2 on

the second dimension, where Λii =
∑

j(A
ij) + α is a diagonal

matrix with α set to 0.001 to avoid empty rows. Given K sam-
pling strategies

∑K
k=1 Ak, the graph convolution for a skeleton

frame can be expanded from (1) as

fout =
∑K

k=1
Λ

− 1
2

k AkΛ
− 1

2

k finWk �Mk, (2)

where Mk is an attention map with the same size of Ak,
which indicates the importance of each vertex. Wk denotes
a weight tensor of the 1× 1 convolutional operation with
(Cin, Cout, 1, 1) dimensions, representing the weighting func-
tion of (1).

⊙
reflects the element-wise product operation.

The convolutional operation along the temporal dimension is
similar to the implementation of 2T-GCN [31]. Specifically, us-
ing the temporal kernel size ofΓ, it performs a 1× Γ convolution
on the feature map fout. The spatial and temporal graph convolu-
tional layers are each connected with a batch normalization layer
and a ReLU layer. To avoid overfitting, a dropout layer is added
to a basic GCN block composed of a spatial convolutional layer
and a temporal convolutional layer. The residual mechanism is
applied to each GCN block to stabilize the training process.

Following the practice of [31], our GCN model is a stack of
9 basic GCN blocks. The first three, middle three, and last three
blocks have 64, 128, and 256 output channels, respectively. The
strides of the 4th and the 7th blocks are set to 2, while all other
blocks use a stride size of 1. We set the temporal kernel size Γ
to 9. A global average pooling layer is used to pool the GCN
feature map to a 256-dimensional feature vector at the last GCN
block. To transform the feature vector to our desired output (i.e.,
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Fig. 3. Illustration of our EGCN++ learning framework. The upper and lower figures show two inputs (i.e., skeleton position and skeleton orientation streams)
represented by two submodels (i.e., GCNs). The middle part shows four ensemble strategies at different levels (i.e., data level, model level, feature level, and
decision level). P (n) and O(n) can be concatenated at the data level. As for model-level fusion, the feature of the last layer of the pre-trained GCN model on
P (n) via the action recognition task can be used as joint weight retrieval to regularize the submodel h for the exercise assessment task. At the feature level, the
characteristics of g and h can be concatenated for prediction or to force their diversity. The results can be aggregated for prediction at the decision level.

correct or incorrect), the last layer of the GCN model is a 1× 1
2D convolutional layer.

B. EGCN++ Framework

Fig. 3 shows the EGCN++ framework. It includes two sub-
models, g and h, that respectively represent the skeleton position
and orientation features. The submodels g andh are GCN models
as defined in Section III-A. Fusion strategies can be applied at
different levels in the middle of these two submodels. According
to the fusion methods for ensemble learning surveyed in [64],
one can use common fusion techniques at the data, feature, and
decision levels in ensemble-based methods. For model-level
fusion, special fusion strategies are needed based on a clear
understanding of the task. In this section, we discuss four groups
of ensemble-based methods relevant to our EGCN++ learning
framework.

1) Data-Level Ensemble: As shown in Fig. 3, the data-level
ensemble method enables fusion for input data P(n) and O(n),
which is also known as sample-level ensemble (SLE). Given
that P(n) ∈ RT×J×3 and O(n) ∈ RT×J×3 share the same graph
structure, we concatenate the position and orientation streams
along the feature dimension, leading to fused input S(n) ∈
RT×J×6. We then feed the constructed S(n) to a single GCN
model, which can be written as

y = σ(FC(GAP (g(S(n), θg)))), (3)

where σ is the Softmax classifier, FC is the fully connected
convolutional layer, and GAP is the global average pooling
layer.

2) Model-Level Ensemble: Unlike other strategies that ar-
bitrarily combine features at specific levels via addition or
concatenation, MLEs rely on a comprehensive understanding
of the data to be tackled. The position and orientation features
can be regarded as the global and local characteristics of an
exercise, respectively. The skeleton position feature is frequently
used in action classification. For example, based on the GCN
model, some model-based fusion methods [67], [68], [69], [70]
have proposed attention mechanisms by taking the average of
neuron activation values along specific dimensions to improve
multimodal action recognition. Inspired by these efforts, we
utilize the neuron activation values retrieved from a pre-trained
g on the skeleton position stream via an action recognition task
as spatiotemporal joint weights to regulate orientation stream
training. Existing fusion practices handle heterogeneous multi-
modal data (i.e., skeleton and RGB modalities) in an attempt to
address action recognition related to human–object interaction.
Our problem formulation does not involve RGB video data, as
none of the investigated exercises include such interaction. Thus,
we do not follow the averaging operation on neuron activation
values because it tends to smooth out the joint importance along
spatial or temporal dimensions of the GCN feature map. Our
MLEs fuse joint weights derived from the last GCN block of
g, which is a Cout × Tout × Jout tensor (see Fig. 3), with the
corresponding model representation of the skeleton orientation
stream h(O(n), θh) via element-wise multiplication. We name
the first MLE strategy MLE-orientation (MLE-O); it can be
written as

y = σ(FC(GAP ( g(P (n), θg)� h(O(n), θh) ))), (4)
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Algorithm 1: MLE-PO Optimization.
Input:
P = {P (n) | n = 1, . . . , N}: position stream
O = {O(n) | n = 1, . . . , N}: orientation stream
Procedure:
1: Train g with position stream P with the action

recognition task on a whole dataset.
2: Concatenate P (n) and O(n) along the channel dimension

to construct skeleton stream S(n).
3: Extract joint weights w by feeding P (n) to the trained

submodel g.
4: Feed the constructed skeleton stream S(n) to a submodel

h.
5: Fuse the features of h and the extracted joint weights w

at the last layer of h.
6: Feed the fused feature in Step 6 to a fully connected

layer.
7: Finish a training epoch by Iterating Steps 2–6 with all N

samples.
Output:
TrainedMLE-PO including submodels: g, h

where g(P (n), θg) is the pre-trained model on the action recog-
nition task that classifies different exercises within a dataset. To
maintain the mutual independence of submodels g andh, the pre-
trained parameters θg of g(P (n), θg) are frozen while training
h(O(n), θh).

⊙
denotes the element-wise product operation.

According to the results from 2T-GCN [31] and EGCN [32],
SLE can achieve better performance than single-modal meth-
ods. We hence transform our MLE-O model into a multi-level
ensemble version called MLE-position orientation (MLE-PO).
It takes the SLE feature as input and makes use of the joint
weights from MLE-O to regulate the training process. This new
fusion strategy (i.e., MLE-PO) can be formulated as follows:

y = σ(FC(GAP (g(P (n), θg)� h(S(n), θh) ))). (5)

The MLE-PO optimization process is depicted in Algorithm 1.
3) Feature-Level Ensemble: In considering the feature-level

ensemble (FLE) method, we investigate two representative
strategies: the FLE base (FLE-B), which simply concatenates
features; and its extension FLE cosine independence (FLE-CI),
which forces feature diversity (see Fig. 3). For FLE-B, we
separately extract two 256-dimensional feature vectors from two
skeleton feature streams and concatenate their extracted features.
This process can be optimized via end-to-end learning for the
whole model. FLE-B can be represented as

y = σ(FC(GAP (Cat(g(P (n), θg),

h(O(n), θh))))), (6)

where Cat is the concatenation operation.
FLE-CI aims to force the diversity of small classifiers, which

is a primary motivation of ensemble-based methods. Our FLE-
CI is based on FLE-B by forcing the feature-level diversity of
FLE-B. Specifically, we follow the local independence training

method [65] that penalizes cosine similarity between the fea-
tures of two submodels to approximate feature-level diversity.
The loss objective of cosine independence error (ECI ) can be
expressed as

ECI(f, g) = E[cos2(g(P (n), θg), h(O
(n), θh))], (7)

which is optimized together with the cross-entropy (ECE) loss
of FLE-B. The overall model objective of FLE-CI is optimized
by minimizing losses: ECI + λECE , where λ is a parameter
used to balance ECI and cross-entropy loss. λ can be either a
learned parameter or a fixed value. We empirically set λ to 0.1.

4) Decision-Level Ensemble: With respect to decision-level
ensemble (DLE) approaches, one can employ different train-
ing strategies to optimize the entire learning framework. Our
EGCN++ accounts for the DLE-full and DLE-dual techniques.
For DLE-full, we aggregate the decision-level prediction results
and train two submodels h and g together via an end-to-end
learning process, which can be written as

y = σ(FC(GAP (g(P (n), θg)))

+ FC(GAP (h(O(n), θh)))). (8)

For DLE-dual, the submodels are trained separately, after
which their prediction results are aggregated. Compared with
DLE-full, the DLE-dual method is more popular when dealing
with homogeneous [49], [50], [51] and heterogeneous data fu-
sion [69], [70] owing to its better performance. This method can
be represented as

y = σ(FC(GAP (g(P (n), θg))))

+ σ(FC(GAP (h(O(n), θh)))). (9)

IV. EXPERIMENTS

We validate our proposed EGCN++ on three datasets: UI-
PRMD [35], KIMORE [36], and EHE [31]. We consider predic-
tion accuracy as well as results’ consistency with human evalu-
ation. According to the survey in [71], prior to the development
of EHE, UI-PRMD and KIMORE were the two most recent
datasets for exercise evaluation. These three datasets are suit-
able for validating our proposed method. We conduct extensive
ablation studies on all datasets to verify the effectiveness of our
ensemble scheme.

A. Validation Datasets

UI-PRMD: The UI-PRMD dataset [35] comprises skeleton
exercise data from 10 healthy subjects. Each subject performs
10 repetitions of 10 rehabilitation exercises (i.e., E1–10) such as
“side lunge”, “sit to stand”, and “deep squat”. For the exercise
assessment task, all subjects are asked to perform each exercise
in correct and incorrect manners. Subjects simulate the incor-
rect positioning of patients with musculoskeletal constraints.
The 3D motion sensor Kinect v2 and Vicon motion capture
provide the position and orientation features of skeleton joints.
We use Kinect v2 data for our experiments because these data
are preferable to Vicon motion capture data as shown in [31].
The UI-PRMD dataset contains inconsistent samples due to
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measurement errors and exercise performance with incorrect
limbs. Therefore, we follow the consistent version1 used in [28],
which has 1,326 exercise repetitions.

KIMORE: The KIMORE dataset [36] is collected via the
Kinect v2 sensor. Data are gathered from 78 subjects across
three categories: a control group of experts (CG-E), a control
group of non-experts (CG-NE), and a group with pain and
postural disorders (GPP). The GPP group includes 34 subjects
with motor dysfunctions such as stroke, Parkinson’s disease, and
back pain. All subjects perform five exercises (i.e., E1–5) such
as “lifting of the arms”, “trunk rotation”, and “squatting”. [36]
reported no overlap between the clinical total score distribu-
tions for CG-E and GPP. This observation implies that we can
treat these groups’ exercise repetitions as correct and incorrect,
respectively. As such, to predict abnormality based on each
exercise, we manually segment the dataset based on noticeable
features and respectively label the repetitions of 17 experts and
34 patients as correct and incorrect.

EHE: The EHE dataset [31] is collected in a real-world elderly
home environment in a natural setting. It contains six morning
exercises such as “wave hands”, “hands up and down”, and “bend
waist to left” that aging adults perform in daily life. The exercises
are completed by 25 subjects and tracked with the Kinect v2
sensor. In total, 10 of 25 subjects have been diagnosed with
Alzheimer’s disease of varying severity (ranging from 0 to 10).

B. Evaluation Metrics

This section first introduces the two functions of exercise
evaluation score calculation, then it provides metrics for investi-
gating model prediction ability and consistency between human
and machine evaluation.

Exercise Evaluation Score Calculation: To conduct a more
exhaustive assessment, we quantitatively and qualitatively ana-
lyze the result consistency between model evaluation and human
evaluation by adopting the evaluation score calculations in [30]
and [31]. Specifically, [31] took the probability results of the
Softmax layer to infer an exercise repetition’s evaluation score.
We retrieve the first dimension of the probability distribution
from our model’s Softmax layer, which can be calculated as

fscore(a, b) =
ea

(ea + eb)
, (10)

where a and b respectively represent the first and second neuron
output values of the fully connected layer, which are then used
to calculate the Softmax layer’s probability distribution. Alter-
natively, given the feature before the Softmax layer (i.e., the
output of the fully connected layer), the exercise evaluation score
can be calculated by using a sigmoid function that transforms
the corresponding neuron value into a range of [0,1] [30]. This
method can be presented as

fscore(a) =
1

(1 + e−a)
. (11)

Model Prediction Ability: In early work, separation degree
(SD) and distance metrics (DM ) were used to examine a model’s

1https://webpages.uidaho.edu/ui-prmd/

Fig. 4. Confusion matrix of action recognition results on UI-PRMD.

Fig. 5. Evaluation scores (calculated with the sigmoid function) of E1 and E7
in the UI-PRMD dataset based on the training set.

representation ability as defined in [28] and [29], respectively.
SD and DM each quantify the difference between correct and
incorrect evaluation results. For a pair of positive numbers x and
y, SD can be calculated as SD(x, y) = x−y

x+y ∈ [−1, 1]. Accord-
ingly, SD between two positive sequences x = (x1, . . . , xm)
and y = (y1, . . . , yn) can be defined as

SD(x,y) =
1

mn

m∑
i=1

n∑
j=1

SD(xi, yj). (12)

Following the evaluation metricSD, [30] achieved 0.808 (calcu-
lated from UI-PRMD’s training accuracy of 99.59%) using the
orientation feature. Upon altering the evaluation score calcula-
tion without changing the model, [31] achieved an even higher
SD of 0.933 under the same experimental setting. [30] adopted
the sigmoid function to calculate the evaluation score; [31] used
Softmax. Given the results of [30] and [31], calculating SD

based on the training accuracy cannot properly reflect a model’s
prediction ability. Instead, we report the SD based on the results
of cross-validation. DM can be calculated as

DM (xn, yn) =
|xn − yn|√

1
N

∑N
i=1 (xn − yn)

2
, (13)

where x = (x1, . . . , xN ) and y = (y1, . . . , yN ) are two pos-
itive sequences. [27] determined that, based on the training set
results, DM also cannot feasibly evaluate a model’s prediction
ability: [30], [31] already demonstrated the GCN model’s strong
representation ability (Fig. 5 visualizes exercise evaluation
scores calculated with the sigmoid function, reinforcing the
GCN model’s capacity to distinguish correct and incorrect ex-
ercise repetitions).

Liao et al. [28] divided the UI-PRMD dataset into a training
set and a test set to evaluate their model’s prediction ability;
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however, results were only reported for E1. Because the KI-
MORE, UI-PRMD, and EHE datasets are relatively small, we
expand on [28] by applying the 5-fold cross-validation criterion
used in [27], [31] to evaluate the prediction abilities of different
ensemble strategies in our EGCN++. Instead of referring to
training accuracy, we investigate evaluation criteria SD and
DM based on prediction results from the 5-fold cross-validation
setting (see Section IV-D).

Consistency between Human and Machine Evaluation: It is
worth noting that the numerical score can indicate exercise
quality without supervision from subjective human evaluation
scores [42] or arbitrary scores calculated by a function as in [28].
To determine whether the newly proposed methods’ evaluation
scores are consistent with human evaluation, we use two metrics
as proposed in 2T-GCN [31]: Euclidean distance and correlation.
For an n-dimensional space, the Euclidean distance ED of two
vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is
calculated as

ED(x,y) =

√∑n

i=1
(xi − yi)

2. (14)

The correlation CR between x and y can be defined as

CR(x,y) =

∑n
i=1 (x− x̄)(y − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2
, (15)

where x̄ and ȳ are the average values of x and y, respectively.
SmallerED(x,y) and largerCR(x,y) indicate that the machine
evaluation is more consistent with the normalized severity of
Alzheimer’s disease observed by a human expert and vice versa.
The normalized severity of this condition ranges from 0 to
1 and can be calculated from the clinical evaluation (from 0
to 10, with 0 indicating normal functioning and 10 indicating
highly severe Alzheimer’s disease) in the EHE dataset [31]. This
calculation can also be applied to expert screening scores on
exercise repetition in the KIMORE dataset [36].

C. Implementation Details

For cross-validation purposes, we split the UI-PRMD, KI-
MORE, and EHE datasets based on two division protocols:
cross-subject (CS) and random division (RD). The CS protocol
can be intuitively more difficult than the RD protocol since the
system needs to work for different subjects (i.e., subjects that
appear in each cross-validation fold are different). Whereas data
from every subject appear in all cross-validation folds of the RD
protocol, which can provide a baseline regarding how well the
system can learn for an individual and offer practical insight into
data collection for real-world scenarios (discussed in Section V).
Table I lists the number of exercise repetitions in the CS cross-
validation folds of the UI-PRMD and KIMORE datasets. Certain
exercises are performed by fewer than five subjects, leading to
a lack of exercise repetition in some cross-validation folds.

The proposed MLEs require the submodel g(P (n), θg) to be
pre-trained via the action classification task with the skeleton po-
sition feature. The pre-trained model is then used to retrieve joint
weights from the position feature to be fused with the orientation
feature at the model level. We include each of a dataset’s exercise

TABLE I
NUMBER OF EXERCISE REPETITIONS FOR TESTING IN CROSS-SUBJECT

CROSS-VALIDATION FOLDS (I.E., F1–5) OF DIFFERENT EXERCISES IN THE

UI-PRMD AND KIMORE DATASETS

classes in our pre-training implementation. The overall action
classification accuracy for the UI-PRMD, KIMORE, and EHE
datasets is 96.91%, 98.04%, and 97.81%, respectively. Fig. 4
shows the confusion matrix of action recognition results for the
UI-PRMD dataset.

All ensemble strategies proposed in EGCN++ are optimized
via stochastic gradient descent. We set the base learning rate at
0.01. Every models is trained for 50 epochs. The learning rate is
decayed by 0.1 at epochs 10 and 30. All experiments are carried
out on a workstation with 2 GTX 1080 GPUs.

D. Experiments on the UI-PRMD Dataset

The left and right parts of Table II show the prediction results
of exercises on the UI-PRMD dataset with two cross-validation
evaluation protocols (CS and RD, respectively). The overall per-
formance of RD is better than that of CS (e.g., 86.14% to 95.00%
average performance increase on UI-PRMD), indicating collect-
ing data from a user to tune the system can greatly contribute to
the performance. Our newly proposed fusion strategy, MLE-PO,
significantly outperforms the state-of-the-art method MLE-O as
well as other ensemble strategies such as SLE, FLEs, and DLEs
for nearly all exercises under the two protocols. MLE-PO thus
combines fusion-related benefits at the data and model levels.
The advantage of SLE could be due to the more integrated
features of heterogeneous data (i.e., position and orientation
features serve as global and local descriptions of an action
repetition, respectively). In MLE-O, the joint weights learned
from the skeleton position feature can augment the learning
process of this feature type (please refer to Section IV-G for
ablations).

Table II also indicates slightly improved overall prediction
accuracy for FLE-CI and DLE-dual over their corresponding
base methods (i.e., FLE-B and DLE-full, respectively) and
single-modal methods (i.e., Pos and Ori). FLE-CI and DLE-
dual are useful for data fusion at their corresponding scales
or positions, which include a mechanism to maintain the sub-
models’ independence. Specifically, FLE-CI uses a cosine sim-
ilarity loss to force diversity, and DLE-dual trains the sub-
models separately. These observations demonstrated that main-
taining submodels’ independence can inform a whole model
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TABLE II
COMPARISON OF ENSEMBLE STRATEGIES FOR UI-PRMD DATASET WITH CROSS-SUBJECT AND RANDOM DIVISION PROTOCOLS (ACCURACY IN %)

Fig. 6. Evaluation scores (calculated by the sigmoid function) of E1 and E7
using MLE-PO with cross-subject protocol on the UI-PRMD dataset.

for the focal task. These results generally align with the re-
lated data fusion theory (i.e., forcing independence or diversity)
[56], [65].

Visualize the Evaluation Score: We visualize and compare
the evaluation scores derived from our experimental setting
and the setting of prior methods to qualitatively support that
the cross-validation approach (introduced in Section IV-C) can
better characterize exercise performance. Specifically, Fig. 5
shows the visualized exercise evaluation score retrieved from
the training set, which follows the initial investigation of [28]
and [29] by keeping the test set the same as the training set. The
UI-PRMD dataset groups its exercise repetitions into correct and
incorrect categories. Modeling this process as a binary classifica-
tion task will lead to these types of evaluation scores, indicating
the basic model’s strong representation ability. However, under
this experimental setting, scores do not reflect the exercises’
degree of accuracy. Using 5-fold cross-validation generates
more meaningful evaluation scores that convey the exercises’
likelihood of correctness. This probability can be interpreted
as the degree of confidence in the classification learned from
the data. Fig. 6 presents the evaluation scores for E1 and E7 in
the UI-PRMD dataset using MLE-PO with the CS evaluation
protocol. These results reflect quality fluctuations in different
exercise repetitions.

Quantitative Analysis: Using the evaluation metrics SD and
DM (defined in (12) and (13), respectively), we quantify the
effects of evaluation score calculation schemes (i.e., Softmax
and sigmoid defined in (10) and (11), respectively). As Table III
indicates, compared with the sigmoid function, the probability
of Softmax leads to a larger disparity between correct and
incorrect evaluation scores. The results for EGCN++ in Table III

TABLE III
COMPARISON OF FUNCTIONS FOR CALCULATING EXERCISE EVALUATION

SCORES ON UI-PRMD DATASET USING STATE-OF-THE-ART METHODS

are the average of 10 exercises (see Table 11 in Appendix
A, available online). MLE-O and MLE-PO are compared in
Table III; as expected, SD and DM are generally positively
related to the prediction results in Table II. Although quantifying
the difference between correct and incorrect evaluation scores
demonstrates a model’s sensitivity, findings do not reflect the
consistency between model evaluation and human evaluation.
A model’s sensitivity can also be based on the pattern learned
from a specific data distribution. More precisely, a model can
possess high prediction accuracy but have relatively low SD

andDM ; for example, E7 (accuracy = 97.62%, SD = 0.8426)
and E9 (accuracy = 95.83%, SD = 0.8664) in the UI-PRMD
dataset are negatively related. It thus remains unclear which
calculation method produces evaluation scores then align closely
with human assessment. We investigate this question using the
following two datasets for which human evaluation scores are
available.

E. Experiments on the KIMORE Dataset

Table IV shows the results on the KIMORE dataset using the
same experimental setting as with the UI-PRMD dataset. Results
yield similar implications regarding the impacts of different fu-
sion schemes. By capitalizing on SLE and MLE-O, the MLE-PO
fusion strategy performs significantly better than model-level
fusion. In particular, for the average prediction accuracies of
eight exercises, MLE-PO outperforms MLE-O by 3.42% and
5.97% under the CS and RD evaluation protocols, respectively.
Meanwhile, maintaining submodel independence via DLE-dual
produces better results than its same-grouped fusion scheme
(i.e., DLE-full) and single-modal methods. However, the cosine
similarity loss cannot promise improvement in this dataset. This
issue may be due to the ad-hoc selection requirement of λ for
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TABLE IV
COMPARISON OF ENSEMBLE STRATEGIES FOR KIMORE DATASET WITH CROSS-SUBJECT AND RANDOM DIVISION PROTOCOLS (ACCURACY IN %)

Fig. 7. Visualization of evaluation scores with our model-level ensemble
strategy on the KIMORE dataset.

various scenarios [65], which is equal to 0.1 throughout our
experimental setting. FLE-CI could potentially achieve better
results with proper fixed or learned values of λ.

Visualize the Evaluation Score: The KIMORE dataset [36]
provides three clinical evaluation scores based on a clinical
questionnaire containing 10 items scored on a scale from 1 to 5
(the higher the better). The first evaluation score is the clinical
total score (cTS), which is the sum of the 10 identified scores.
The second score is the clinical primary outcome (cPO), which is
calculated based on the sum of scores on the first three questions.
The third score is the clinical control factor (cCF): the sum of the
last seven items concerning postural performance (e.g., postures
of the head, right arm, and right leg). We conduct qualitative and
quantitative analyses based on these score categories.

Recall that the KIMORE dataset has three subject groups
(CG-E, CG-NE, and GPP) that reflect varying levels of exercise
capability. Based on the three evaluation scores, the visualized
scores for all exercises performed by subjects in CG-E and
GPP [36] do not overlap; that is, these groups can be treated
as correct and incorrect samples. Hence, we use both samples
as training data with the CG-NE sample as test data to infer
the latter group’s evaluation scores. By doing so, we provide a
qualitative view of the match between machine evaluation and
clinical evaluation. Fig. 7 shows the box plots of E1–5 for the
three subject groups in the KIMORE dataset. Evaluation scores
between the first and third quartiles are consistent with the total
clinical scores reported in [36]. The average scores also reflect
group-based performance differences.

Quantify the Consistency: In addition to providing a qual-
itative perspective, we further examine the consistency be-
tween machine evaluation and human evaluation via quantitative

TABLE V
COMPARISON OF FUNCTIONS FOR CALCULATING EXERCISE EVALUATION

SCORES ON KIMORE DATASET USING STATE-OF-THE-ART METHODS

analysis based on the metric CR. As listed in Table V, compared
with the sigmoid calculation, the Softmax probability generates
more consistent evaluation scores with human evaluation across
a trio of human evaluation metrics (i.e., cTS, cPO, and cCF).
The newly proposed MLE-PO from the EGCN++ outperforms
state-of-the-art methods [27], [30] in terms of consistency with
human evaluation. Expanded results for EGCN++ in Table V
appear in Table 12 in Appendix A, available online, with a
discussion of the differences between left-side and right-side
exercises.

F. Experiments on the EHE Dataset

Table VI displays the results for ensemble strategies on the
EHE dataset. Following the results of previous datasets (i.e.,
UI-PRMD and KIMORE), the MLE-PO fusion strategy out-
performs almost all other strategies on all EHE exercises. Com-
pared with MLE-O, the average prediction accuracy respectively
improves by 3.97% and 2.59% for the CS and RD evaluation
protocols. These results again substantiate the effectiveness of
our MLE-PO fusion strategy. MLE-O and SLE respectively
achieve the second- and third-best results among other methods,
collectively contributing to MLE-PO’s excellent performance.
Forcing feature-level and decision-level independence does not
benefit this dataset. FLE-CI relies on a properly chosen λ to
realize good performance. Additionally, compared with our
model-level fusion schemes, simple decision-level fusion does
not seem to be effective.

Quantify the Consistency: Following the evaluation metrics
in [31], we use ED and CR to analyze the consistency with
human evaluation. Compared with state-of-the-art methods such
as [27], [30], [31], the evaluation scores of MLE-PO (calculated
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TABLE VI
COMPARISON OF ENSEMBLE STRATEGIES FOR EHE DATASET WITH CROSS-SUBJECT AND RANDOM DIVISION PROTOCOLS (ACCURACY IN %)

TABLE VII
COMPARISON OF FUNCTIONS FOR CALCULATING EXERCISE EVALUATION

SCORES FOR EHE DATASET USING STATE-OF-THE-ART METHODS

via sigmoid or the Softmax probability) can align better with
human evaluation (see Table VII). Meanwhile, similar to results
for the KIMORE dataset (see Table V), the evaluation score cal-
culated with Softmax is more consistent with human evaluation.
Expanded results for the EGCN++ on different exercises are
available in Table 13 in Appendix A, available online. Although
the results for evaluation metrics ED and CR in Table 13 do
not perfectly match the prediction accuracy of MLE-PO in
Table VI, the trend is that higher prediction accuracy im-
proves the consistency between machine evaluation and human
evaluation.

G. Ablation Study

Our MLE methods can be implemented with different training
strategies. To validate the superior performance of our MLE-O
and MLE-PO shown in Tables II, IV, and VI, we conduct ablation
studies with the following MLE-O implementations.

1) Self-importance: Use the joint weights derived from h to
replace those from g by fixing one θh and updating another
θh.

2) Swap h and g: Calculate the joint weights from h and
update the θg .

3) No Pre-training: Optimize h and g together without pre-
training g.

4) Tune θg: Optimize θh while updating θg of the pre-trained
g.

5) Fix θg, Mean Along Cout: Average the joint weights along
the Cout dimension (see Fig. 8(right)), which is similar
to [67], [68].

6) Implementation with Other Backbones: Our methods
can be implemented with other backbones, such as

Fig. 8. Left: visualization of joint weights derived from neuron activation
values of the pre-trained g. Right: visualization of mean values along the Cout

dimension. Larger neuron activation values magnify the joint weights and vice
versa.

TABLE VIII
RESULTS OF ABLATION STUDIES FOR MLE ON UI-PRMD, KIMORE, AND

EHE DATASETS WITH THE CS PROTOCOL (ACCURACY IN %)

AGCN [49], MS-G3D [50], and CTR-GCN [51], which
were originally designed for action recognition.

Corresponding results for the three datasets (i.e., UI-PRMD,
KIMORE, and EHE) appear in Table VIII. Fixing θg is consis-
tently more effective than other settings. The adopted backbone
GCN model also works better than other tested backbones. In
brief, the orientation feature fails to learn joint weight knowledge
as Ablations 1 and 2 cannot perform well on these three datasets.
Without pre-training Model g via the position feature, Ablation
3 also cannot achieve satisfactory results, indicating that useful
information (i.e., joint weights) is learned from pre-training
g via the position feature. According to Ablation 4, tuning g
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TABLE IX
AVERAGE PREDICTION RESULTS IMPLEMENTED WITH STATE-OF-THE-ART GCN MODELS (SEE POSITION AND ORIENTATION ROWS) AND ENSEMBLE METHODS OF

OUR EGCN++ IMPLEMENTED WITH DIFFERENT BACKBONES (I.E., GCN, AGCN, MS-G3D, AND CTR-GCN) (ACCURACY IN %)

together with theh affects Model g’s physical meaning (i.e., joint
weights). The results of Ablation 5, “Fix θg , Mean Along Cout”
in Table VIII, show that taking the mean value along the channel
dimension can smooth out channel-level importance. Fig. 8(left)
illustrates where the visualized joint weights fluctuate along the
Cout dimension. Consequently, the averaged joint weights (see
Fig. 8(right)) can be less informative than the original.

H. Comparison With State-of-the-Art

Sections IV-D, IV-E, and IV-F have compared state-of-the-art
exercise assessment methods based on multiple evaluation met-
rics. Other state-of-the-art methods (designed for action recog-
nition) can also be directly applied to the exercise assessment
task as baselines. For this purpose, we first compare state-of-
the-art GCN models such as AGCN [49], MS-G3D [50], and
CTR-GCN [51] via the single-modal setting (i.e., using either
position or orientation). Table IX contains prediction results
for these baselines. We next implement our EGCN++ using
the GCN baselines as backbones to further explore ensemble
strategies proposed in our EGCN++ on the three datasets (see
Table IX). Replacing the backbone with other advanced GCN
baseline models does not lead to stable improvements. For
instance, MS-G3D can improve the single-modal setting of the
orientation feature for the UI-PRMD dataset but does enhance
the performance of single-modal settings for the other two
datasets. This outcome may have arisen because these GCN
baselines were designed for action recognition instead of for
exercise assessment. With our multi-level fusion approach, the
MLE-PO method using the basic GCN outperforms the SLE
using CTR-GCN on three datasets. This pattern further confirms
that the joint weights learned from the position stream can
regularize the orientation stream’s training process.

I. Runtime Analysis

It takes about 4 minutes for our model to train one fold of
5-fold cross-validation on two GTX 1080 Ti GPUs with a batch
size of 8. Regarding the methods’ running time, we provide
details including the inference time, the number of model pa-
rameters, and floating point operations (FLOPs) in Table X. We
use fvcore2 to calculate FLOPs. We test 20 samples (each sample

2fvcore: https://github.com/facebookresearch/fvcore.git

TABLE X
RUNTIME ANALYSIS OF METHODS USED IN THIS RESEARCH

has 150 skeleton frames and takes around 5 seconds) on a single
GTX 1080 Ti with a batch size of 1 and report the average
inference time. The runtime analysis indicates that MLE-O and
MLE-PO are effective and computationally efficient.

V. DISCUSSION OF FUTURE DIRECTIONS

We have comprehensively compared several ensemble strate-
gies and assessed the consistency between machine and human
evaluations based on all currently available resources. However,
avenues remain open for exploration in terms of representation
models, domain knowledge, and problem definition.

Among other deep learning methods, recent advances in graph
convolution models such as [52], [53], [72], [73], [74] have
struggled to further improve the action recognition performance
following the introduction of MS-G3D [50] and CTR-GCN [51].
More skeletal representations (e.g., skeleton bone, joint motion,
and bone motion) can produce slight improvements in action
recognition, which should be explored to potentially enhance
the exercise assessment task. Present skeleton-based action
recognition mainly ignores the orientation feature. Our work
can motivate action recognition studies that account for this
characteristic.

Our proposed approach relies solely on data to generate the
machine evaluation score. Although this score can be consistent
with human evaluation, it does not suggest what is going wrong
with an exercise. More domain knowledge should be incorpo-
rated into new evaluation standards that can guide trainees by
offering timely, or even instantaneous, feedback. [75] collected
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a large real-world dataset that includes many exercises and fine-
grained evaluations. Overall, however, large-scale open datasets
are lacking in this field.

In addition to obtaining large-scale datasets, data efficiency
and domain generalization are important to consider in the future
when analyzing results. The RD evaluation protocol outper-
formed the evaluation CS protocol in our case (see Tables II,
IV, and VI). Practitioners might consider gathering new data
from subjects to support disease diagnosis or monitor the effects
of behavioral therapies. The amount of additional data to be
collected from new subjects can be determined using the learning
regimes of few-shot learning and efficient transfer learning [76],
[77].

Given the need for more helpful machine evaluation with si-
multaneous feedback, challenges such as segmentation, subject
bias, and environmental change stand to be tackled. Along this
line, [78] formulated the problem as pose matching. Scholars
have yet to identify whether the ground truth is subject-specific
(i.e., whether subjects define their ground truth in distinct ways).
For example, when people play golf, they might have different
wave trajectories. Novel problem definitions involving other
sensors such as IMUs [79], biological sensors (e.g., EEG and
MRI) [80], or even mixed reality devices [81] can be considered
to possibly rectify these issues.

VI. CONCLUSION

In this paper, we have proposed the EGCN++ framework
with various ensemble-based learning strategies for effective
skeleton-based exercise assessment. The MLE-PO ensemble
strategy fusing data at the data and model levels is superior
to other fusion strategies and baselines. We have used several
evaluation metrics to validate our strategy’s effectiveness. After
extensive experiments on the latest UI-PRMD, KIMORE, and
EHE datasets, MLE-PO outperforms other ensemble strategies
in terms of prediction accuracy. Given the evaluations available
in the KIMORE and EHE datasets, MLE-PO can provide ma-
chine evaluation scores that are generally more consistent with
human evaluation. This result reinforces our strategy’s effective-
ness. Finally, we have used several training schemes and ablated
backbone implementations for our MLE strategy, followed by
a runtime analysis that shows MLE-PO to be computationally
efficient.

In the future, we aim to develop real-time exercise evaluation
methods that can handle segmentation and provide helpful,
timely feedback to exercise trainees while capturing more do-
main knowledge.
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