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Abstract—Human action recognition (HAR) in RGB-D videos has been widely investigated since the release of affordable depth
sensors. Currently, unimodal approaches (e.g., skeleton-based and RGB video-based) have realized substantial improvements with
increasingly larger datasets. However, multimodal methods specifically with model-level fusion have seldom been investigated. In this
paper, we propose a model-based multimodal network (MMNet) that fuses skeleton and RGB modalities via a model-based approach.
The objective of our method is to improve ensemble recognition accuracy by effectively applying mutually complementary information
from different data modalities. For the model-based fusion scheme, we use a spatiotemporal graph convolution network for the skeleton
modality to learn attention weights that will be transferred to the network of the RGB modality. Extensive experiments are conducted on

five benchmark datasets: NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, Northwestern-UCLA Multiview, and Toyota Smarthome.
Upon aggregating the results of multiple modalities, our method is found to outperform state-of-the-art approaches on six evaluation
protocols of the five datasets; thus, the proposed MMNet can effectively capture mutually complementary features in different RGB-D
video modalities and provide more discriminative features for HAR. We also tested our MMNet on an RGB video dataset Kinetics 400
that contains more outdoor actions, which shows consistent results with those of RGB-D video datasets.

Index Terms—Human action recognition, model-based fusion, ensemble learning
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1 INTRODUCTION

Human action recognition (HAR) is an active research
area in computer vision that extends to many practical
applications in realms such as healthcare and physical
rehabilitation, interactive entertainment, and video under-
standing. Technological advances in human body skeleton
detection have enabled skeleton features to be affordably
and easily retrieved, leading to a relatively sparser and more
heterogeneous data modality compared with existing RGB
or depth modalities. HAR has recently witnessed notable
improvements in unimodal methods such as skeleton-based
and RGB video-based methods. For instance, skeleton-
based methods [1], [2], [3], [4] use graph convolutional mod-
els to represent spatiotemporal features of skeleton joints
and skeleton bones; these methods lead to performance
improvements by aggregating the results of homogeneous
input (i.e., skeleton joints and bones). Similarly, approaches
using RGB video input [5], [6], [7] are designed to model
representations of spatiotemporal features in RGB videos
and optical flow streams estimated from such videos.

However, unimodal methods using skeleton or RGB
modalities come with obstacles. The major limitation of ap-
proaches involving RGB video input is the absence of a 3D
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structure. Skeleton-based methods are also constrained by
the absence of texture and appearance features. Action pairs
that have similar skeletal movements in the NTU RGB+D
[8] dataset (see Fig. 1), such as “reading” and “writing,”
“typing” and “writing,” or “pointing to something” and
“patting other’s back,” are difficult to distinguish using
skeleton-based methods.

Among efforts to better address HAR in RGB-D videos,
heterogeneous vision-based multimodal methods that incor-
porate skeleton and RGB modalities have shown promise
in boosting HAR performance [9], [10]. Other attempts
have integrated multiple data modalities, such as homo-
geneous vision-based multimodal (e.g., skeleton joints and
bones) HAR methods [2], [4] and even heterogeneous sensor
modalities [11], [12], [13]. The core task of multimodal HAR
methods is data fusion, which can be further classified as
data-level fusion, feature-level fusion, and decision-level
fusion [14]. Data-level fusion is rarely adopted when the in-
volved data modalities are intrinsically heterogeneous. Ex-
isting data fusion methods usually concatenate feature-level
representations at the fully connected layers of modality-
specific models or aggregate decision-level results from the
final Softmax layers [15], [16], [17]. However, exactly how to
effectively fuse data modalities to enhance HAR accuracy
in RGB-D videos remains an open question. In addition
to data-level, feature-level, and decision-level fusion, [18]
summarized another fusion method called co-learning in
which knowledge from one data modality facilitates model-
ing in another data modality; this approach could be applied
in multimodal HAR. To advance prior work around co-
learning, we propose a novel model-based multimodal net-
work (MMNet) in this paper to model effective knowledge
transformation when fusing skeleton and RGB modalities to
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Fig. 1. Difficult action pairs (e.g., Actions 11 and 12, Actions 12 and
30, and Actions 31 and 53) in the NTU RGB+D dataset that confuse
skeleton-based models. The goal of this paper is to capture complemen-
tary features from the RGB modality to compensate for the limitation of
skeleton-based methods.

improve the human action recognition in RGB-D videos.

In our proposed MMNet, we first construct a represen-
tation of the RGB modality based on the assumption that an
action can be easily recognized by a human when sufficient
spatial and appearance features are provided in a temporal
manner. To enable machines to simulate human cognition in
action recognition, spatial and appearance features should
be provided and properly modeled. When human eyes
observe an action, the observer develops a general idea of
what the subject is doing based on spatial skeleton data.
However, human actions typically involve interactions with
objects and other human subjects. Narrowing the search
space based on objects’ appearance features can facilitate
machines” action recognition. Object recognition was thus
adopted in [15] and [19]. In terms of specifying the objects
with which a person is interacting, we focused on areas of
the body including the head, hands, and feet, which often
convey appearance features of objects and bodily move-
ments. The relationship between an object and a person
evolves as an action progresses. As such, we attended to
varying appearance features throughout RGB video frames
by constructing a spatiotemporal region of interest (ST-
ROI) feature map. This strategy alleviates the challenge
associated with a vast volume of video data.

When using ST-ROI from the RGB modality, deep learn-
ing (DL) models such as VGG nets [20] and ResNet [21]
can quickly become overfitted. However, directly applying
feeding the ST-ROI to these DL models can not achieve
satisfactory single modal and ensemble results. We therefore
propose transferring knowledge of the skeleton modality
to facilitate action recognition in the RGB modality of our
MMNet. In particular, we derived an attention mask from
the skeleton joint stream of the proposed MMNet to focus
on ST-ROI areas that offer complementary features, which
could boost the recognition of human actions in RGB-D
videos.

An earlier version of this manuscript appeared in [22].
The present version makes several new contributions. First,
we introduce a multimodal DL architecture that fuses dif-
ferent data modalities at the model level with an attention
mechanism and uses the skeleton bone stream. Second,
our method greatly improves state-of-the-art performance

2

as demonstrated by three benchmarking datasets: NTU
RGB+D 120 [10], PKU-MMD [23], and Northwestern-UCLA
Multiview [24]. Third, we analyze two key parameters of the
proposed MMNet in Sections 4.8 and 4.9 to further validate
the method’s effectiveness.

The remainder of this paper is organized as follows.
Section 2 introduces related work. In Section 3, we detail
the proposed MMNet. Section 4 provides ablation results
for benchmark datasets and comparisons with state-of-the-
art methods. Section 5 concludes the paper.

2 RELATED WORK

HAR has witnessed great progress, from unimodal methods
including vision-based [25], ambient sensor-based [26], and
wearable sensor-based [27] approaches to the paradigm of
multimodal methods. In this section, we discuss research
on unimodal HAR and multimodal HAR methods that use
data from RGB-D videos.

2.1 Unimodal HAR
2.1.1 Skeleton-based HAR

Skeleton data can be retrieved through vision sensors in-
cluding depth sensors, stereo cameras, and motion captures
[28]. Since the release of RGB-D sensors such as Kinect
and RealSense, coupled with advances in human body
skeleton detection via RGB cameras, skeleton-based HAR
methods have exploded within the computer vision domain.
Traditionally, algorithms for skeleton-based HAR focus on
modeling geometrical features based on the sequential and
spatial characteristics of skeleton sequences. Algorithms
including support vector machine, hidden Markov models,
and dynamic time warping were common in earlier work
[29], which was later dominated by DL algorithms that
could automatically learn features from large datasets [30].
Wang et al. [30] reviewed DL models for HAR, such as a
deep neural network, convolutional neural network (CNN),
and stacked autoencoder.

Available skeleton-based HAR methods appear to em-
phasize three main directions to improve recognition ac-
curacy. The first direction focuses on data preprocessing
and data cleaning. For example, Liu et al. [31] proposed
a method that removes skeleton joint noise by learning
a model that reconstructs more accurate skeleton data. A
similar strategy was proposed by Zhang et al. [32]. The
second approach improves HAR benchmarks by proposing
novel learning or representation models. For instance, Liu
et al. [33] put forth a context-aware LSTM model that could
learn which parts of joints contributed to HAR. Since the
induction of spatiotemporal graph convolutional networks
(ST-GCN) [1], enhanced versions of GCN models have been
suggested to improve the results of ST-GCN by consid-
ering other physical prior knowledge [4], [34], [35], [36].
The third method involves data augmentation that learns
data generation models to produce more training data and
provide additional fuel to DL models. Barsoum et al. [37]
developed a sequence-to-sequence model for probabilistic
human motion prediction, which predicts multiple plausible
future human poses from the same input. However, it is not
yet clear whether the generated data can be used to enhance
HAR models’ generalization abilities or accuracy.
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2.1.2 RGB Video—Based HAR

Because RGB video data are relatively simple to obtain, large
datasets such as UCF-101 [38], HMDB-51 [39], and Kinetics
[40] are common benchmarks in video-based HAR. Carreira
presented an inflated 3D CNN (I3D) [5] that used a pre-
trained Inception-vl model on ImageNet as its foundation
to enhance the performance of UCF-101 and HMDB-51.
Two data streams, namely an RGB stream and an optical
flow stream (extracted by the TV-L1 algorithm [41]), were
applied to vision-based HAR for the two-stream model in
[5]. The optical flow stream was found to perform better
on UCF-101 and HMDB-51 but was surpassed by the RGB
stream on a Kinetics subset. In addition to I3D, Xie et al. [6]
considered speed-accuracy trade-offs in video classification
and proposed a separable 3D CNN (S3D) model that further
improved the performance in [42]. Notably, S3D [6] carried
a heavy computational cost, as 3D ConvNets with high
training parameters are resource exhaustive.

Intuitively, aggregating the results of S3D with those of
skeleton-based methods could boost recognition accuracy.
However, for indoor actions with a consistent background
as shown in Fig. 1, such video-based methods might not
perform well per [43] and [44]. In particular, I3D and S3D are
designed for outdoor actions in UCF-101 [38] and Kinetics
[40], where the features in background scenes contribute
to recognition [45], [46]. The experiments in [47] were
performed with a leaning scheme to alleviate the bias in
background scenes. Specifically, it penalizes the recognition
ability of its model when only background scene informa-
tion is available. With such a learning scheme, the methods
in [47] cannot classify outdoor actions in UCF-101 [38]
as effectively as the method in [7]. Comparatively, with
proper feature use in background scenes, the methods in
[45] and [46] achieve good performance on Kinetics-400. For
example, the filters that capture the texture of the water can
help the classification of challenging actions such as water
skiing and surfing water [45]; while [46] proposed to filter
out redundant features in the background scenes to regulate
the training process.

The indoor actions in NTU RGB+D [8] may be more
challenging to manage using these video-based methods
because the actions have relatively less distinguishable in-
formation in background scenes. Computational resource
limitations pose another barrier, as it needs GPU clusters
with 56 GPUs to train.

2.2 Multimodal HAR
2.2.1 Fusion-based Multimodal HAR

Fusion-based multimodal HAR approaches are generally
thought to have the potential to boost recognition accu-
racy and distinguish difficult actions [10], [13]. DL fusion
methods can be roughly categorized as joint or coordinated
representations [18]. Joint representation is related to model-
agnostic approaches that concatenate representations at ei-
ther the feature or decision level [15], [16], [17]. Yet these
fusion methods offer limited improvement and are difficult
to enhance further because the relationship between their
unimodal networks remains implicit.

Coordinated representation focuses on enforcing either
similarity between unimodal representations [43], [48] or
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more structure on the resulting space, as in correlation-
independence analysis [49]. However, in [43] and [48],
the authors did not consider whether enforcing similarity
between the probability distribution before the Softmax
layer could contribute to the ensemble result. Moreover,
the methods in [43] and [48] relied on the performance
of their cumbersome model, which was aggregated based
on the results of submodels, to regularize their modality-
specific networks. The correlation analysis in [49] also failed
to determine which data modality was best for recognizing
which actions. Our multimodal setting is distinct from that
in [48], where not all data modalities were available in
the testing phase. Instead, we focus on a case where all
data modalities were available for the training and testing
phases, leading to a multimodal learning setting called
multimodal fusion [50].

2.2.2 Model-based Multimodal HAR

Model-based multimodal methods address multimodal
HAR at the model level, which is consistent with the con-
cept of co-learning [18] and represents a kind of fusion
method. Model-based fusion differs from typical fusion-
based methods such as feature- and decision-level fusion,
which respectively correspond to the concatenating and
adding operations of model-agnostic fusion methods. Our
model-based fusion approach is also unique from existing
model-level fusion methods that require representation sim-
ilarity among different modalities. Specifically, our MMNet
addresses fusion with co-learning based on a comprehen-
sive understanding of the data structure; specifically, we
learned representation from the RGB modality by focusing
on body areas that brought mutually complementary fea-
tures to the skeleton modality.

Similar co-learning attempts were made in [44], [51],
and [52], which used skeleton and RGB modalities to
capture mutually complementary information. Unlike the
approaches proposed in [44], [51], and [52] that focused
on appearance features on two hand areas with the help
of the skeleton modality, we focused on more body areas
including the head, both hands, and both feet in a temporal
manner. Another similar method that achieved excellent
performance on NTU RGB+D datasets with skeleton and
RGB data is VPN [53].

VPN aims to use video-based models (i.e., 13D, S3D,
etc.) to improve the recognition of its fused model whereas
our method avoids the huge computational cost of video-
based models. Meanwhile, our objective is to complement
the insufficiency of appearance feature in skeleton data
rather than to improve video-based unimodal methods.
Besides, our MMNet differs from existing work because it
entails a simpler learning structure and fewer loss terms but
performs better. We also referred to skeletal features at the
decision level because the skeleton bone stream has been
shown to be more discriminative than the skeleton joint
stream according to [2] and [4].

3 MODEL-BASED MULTIMODAL NETWORK

In this section, we introduce the DL architecture of the
proposed MMNet from the perspectives of subnetworks
used to learn features from the skeleton and RGB modalities.
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Then, we elaborate upon the model-based fusion mecha-
nism between the two modalities.

As Fig. 2 indicates, we take skeleton and RGB video data
modalities as MMNet input. The proposed MMNet is con-
structed with three individual networks to learn neural rep-
resentations from skeleton joints, skeleton bones, and RGB
video input. Inspired by [2] and [4], we divide the skeleton
input into skeleton joints and skeleton bones. Model-based
feature fusion then occurs between the ST-ROI constructed
from RGB video input and the joint weights learned from
skeleton joints via a GCN model. Given N training samples
in a dataset, we denote the features of the ith sample as
{J® BO vV}, where J* is the skeleton joint input, B(%)
is the skeleton bone input, and V(@ is the RGB video input;
the corresponding action label is denoted as y(*). The goal
is to learn the feature extractors, including for submodels
G j, Gp, and Gy with respective parameters © 7, O, and
Oy, referring to the action class with an ensemble operation.
This operation can be written as

1=G;(0;,J)+Gp(Op,B)+Gy(Oy,V) 1)

3.1 Construct ST-ROI from RGB Modality

Intuitively, video-based models such as I3D [5] and S3D
[6] could be top choices to learn discriminative features
from the RGB modality. However, these models require
vast computational resources in the form of RAM and GPU
memory and take a long time to converge. We also observe
that early video-based models such as C3D can not perform
well on NTU RGB+D 60 due to the limited number of
data [43] [44]. Hence, we propose constructing the ST-ROI

and QCB(” denote respective predictions from skeleton joint and bone streams, which are aggregated through the modality-
to deliver the ensemble recognition result.

from the RGB modality and using general CNN models to
retrieve effective features from it.

Let us notate V. = V@ | j = 1,...,N} as the RGB
modality that has NV video samples for training. Then an or-
dered video sequence of an action in the time interval [1, T
can be represented as V() = (fl(i)7 cel fti), R 7@),
where ft(z) is the frame at time ¢. To crop the spatial ROI from
an action video, we use joints of the skeleton retrieved with
the OpenPose tool introduced in [54], which is somewhat
more accurate than the skeleton retrieved by the Kinect v2
sensor. Given an RGB frame ft(i), we define a transformation

function g to construct the spatial ROI Rg.) of a joint as

B = g (59,f9) 5 € (s
where og) is the jth joint of the OpenPose skeleton at
time t. my to myy, are the MY, indices of the OpenPose
skeleton joints we are considering, which are not larger
than the total number of OpenPose skeleton joints M.
Given V(® ( 1(1), e ftz), e 7@), we perform
temporal sampling that selects L representative frames at
time 7 {interval x 1 | 1 =1,...,L, interval =T/L}
and concatenate them into a square ST-ROI as shown in the
one-subject case in Fig. 3. For actions that have two subjects,
we crop the ST-ROIs of each subject as shown in the two-
subject case in Fig. 3. The ST-ROI significantly reduces the
data volume of RGB video input while reserving the object’s
appearance and the movement information of actions. The
temporal sub-ROI at time 7 will have M’ spatial sub-ROlIs,

s may), Mo < Mo (2)
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One-subject Case
-

Fig. 3. Construction process of ST-ROI. The top case has one subject,
and the bottom case has two subjects. Both cases are based on the
OpenPose 2D skeleton.

which can be vertically concatenated and represented as
RrRY. Conversely, the spatial sub-ROI of the jth joint will
have L temporal sub-ROIs and can be horizontally con-
catenated and represented as R;i). The ST-ROI of V® can
then be notated as R(*), which contains M’ x L sub-ST-ROIs
denoted as R(T?

3.2 Learn Joint Weights from Skeleton Modality

For the skeleton modality, the ¢th training sample that
starts at time ¢ = 1 and ends at time 7' with skele-
ton frames collected at regular intervals can be rep-
resented as a sequence of 7 skeleton frames J(*) =
IO, J9, ). We denote the corresponding
sequence of skeleton bones transformed from the skeleton
joints as B(*) = (B%z), . Bt(’), . B(TZ)). Given a set of
M joints in a skeleton frame observed at time ¢, we represent
itas /) = (J3, ..., I, o ) with J) € RO that
has C attributes. We then construct a spatiotemporal graph
to represent the spatial and temporal structure of J(*). The
structure of the GCN follows [1] and [2]. Fig. 4(a) illustrates
the structure of the spatiotemporal skeleton graph, where
the joints and bones of a single skeleton frame are depicted
by graph vertices (orange circles in Fig. 4[a]) and their
natural connections (purple lines in Fig. 4[a]), respectively.
Sequentially, two adjacent skeletons are connected by edges
between the joints (dashed black lines in Fig. 4[a]). The at-
tribute of a graph vertex can be the corresponding 3D coor-
dinates of each joint. The skeleton graph of a skeleton input
J@ can thus be symbolized as G = (V, &), where V and
& denote the joints and bones, respectively. In this graph,
the node set V = {v; | vy = Jt(;-),t =1..,7,5=1,...M}
contains all joints of the skeleton input. Meanwhile, the edge
set £ = {er]er = Bt(l) = (v — o)t = 1,1, 4,k =
1,..., M} represents all bones of the skeleton input.

3.2.1

To represent the sampling area of convolutional operations,
a neighbor set of a node wvy; is defined as N (vy) =
{vij | d(vy,v5) < D}, where D is the maximum path
length of d (vy;,v¢;). Fig. 4(b) displays this strategy, where

Graph Convolutional Operation

(a) (b)

Fig. 4. (a) Structure of spatiotemporal skeleton graph. (b) Spatial sam-
pling strategy of graph convolutional network. Different colors denote
different subsets: green stars denote the vertex itself; yellow triangles
denote the farther centrifugal subset; blue squares denote the closer
centripetal subset.

x represents the skeleton’s center of gravity. The sam-
pling area N (vy;) is enclosed by the curve. In detail, this
strategy empirically uses 3 spatial subsets: the vertex it-
self (the green star in Fig. 4[b]); the centripetal subset,
which contains neighboring vertices closer to the center of
gravity (the blue square in Fig. 4[b]); and the centrifugal
subset, which contains neighboring vertices farther from
the gravity center (the yellow triangle in Fig. 4[b]). Sup-
pose there is a fixed number of K subsets in the neigh-
bor set; they will be labeled numerically with a mapping
le; o+ N(vy) — {0,..., K — 1}. Temporally, the neighbor-
hood concept is extended to temporally connected joints as
N (v) = {vg; | d(vij,v4) < K, |g—t] <T'/2}, where I is
the temporal kernel size that controls the temporal range
of the neighbor set. Then the graph convolution can be
computed as

1

0 i — )
t ZUMEN(U“‘) Zti (Utj)

where fi,(vy;) is the feature map to acquire the attribute
vector of v;j, and w(l(vy;)) is a weight function w (vy;, vy;)
N(vy;) — R that can be implemented with a tensor of
(C, K) dimension. Zti (Utj) = |'Utk|lti (Utk) = lti (Utj)‘ is
equal to the cardinality of the corresponding subset, which
serves as a normalization term.

fin (ig) W(l(ves))  (3)

3.2.2 Joint Weights

Upon applying graph convolution to the skeleton modality,
the output of each vertex on the graph can be used to infer
the importance of the corresponding skeleton joint. The
feature map of the skeleton sequence can be represented
by a tensor of (C, T, M) dimensions, where C' denotes
the number of attributes of the joint vertex, T' denotes the
temporal length, and M denotes the number of vertices.
This partitioning strategy can be represented by an adjacent
matrix A with its elements indicating whether a vertex vy
belongs to a subset of N (vy;). The graph convolution can
then be implemented using a 1 x I classical 2D convolution
and by multiplying the resulting tensor by the normalized
adjacency matrix A~2AA"2 on the second dimension.
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With K partitioning strategies Zle A, Equation 3 can be
transformed into

-y

where A}l = Y.(A})) 4+ « is a diagonal matrix with
set to 0.001 to avoid empty rows. Wy, is a weight tensor
of the 1 x 1 convolutional operation with (Cjy,, Cout, 1, 1)
dimensions, which represents the weight function of Equa-
tion 3. My, is an attention map with the same size as Ay,
demonstrating the importance of each vertex. © denotes the
element-wise product between two matrices. J@ is a tensor
of size (¢, t, M) with ¢ as the number of output channels,
t as the output temporal length, and M as the number of
vertices. This tensor can be used to infer the action class and
can be transformed into joint weights to provide attention
knowledge for the RGB modality. The joint weights that
represent their corresponding body area importance can be

calculated as
; 1 c t NZ 2
w® = " Zl Zl / (Jc(t)) (5)

where ¢ and ¢ are output dimensions of the convolutional
graph denotin% the temporal length and output channels,
respectively. w(?) is a vector that contains the weights of M
different skeleton joints.

A 2AAZf, (J(i)) Wi oMy (4)

3.3 Model-based Fusion

We propose a spatial weight mechanism for RGB frames
to enable the machine to focus on RGB features that will
provide discriminative information. More explicitly, the ma-
chine will be more capable as it intuitively mimics action
recognition of the human eye. Researchers have aimed to
derive an attention weight from the RGB modality itself. For
instance, [55] tested four variants of attention mechanisms
based on convolutional LSTM [56], but results showed
few to no performance improvements. Hence, we have
not continued to explore the contributions of self-attention
mechanisms in this work; instead, we chose to use joint
weights from the skeleton modality and multiply them by
the ST-ROI to regularize the RGB modality. The skeleton-
focused ST-ROI (denoted as R’ (Z)) of the ith training sample
can be mapped from R() with a function h defined as

R :h(Ry),wy)) Lj=ml, .,y M <M ()
where w; is the weight of the jth joint, and Ry) is the
sub-spatial ROI of the corresponding body area. While
mj, ..., my, are the indices of M’ different skeleton joints
corresponding to body areas that we propose to focus on.
The value of M’ equals to that of M, in Equation 2. Fig. 5
shows the data fusion process of Equation 6.

3.4 Objective Function

We build the end-to-end format of our MMNet with the sum
of a collection of loss terms supervised by the action label,
which is represented as

c=2,(i"y) + Lo (i%9) + Lv (3y) @

Focused ST-ROI

Joint Weights

Fig. 5. Model-based fusion scheme of our MMNet. It constructs a
skeleton-focused representation of the RGB modality by multiplying joint
weights by the ST-ROI.

where L7, Lp, and Ly are the loss terms of skeleton joints,
skeleton bones, and RGB video input, respectively. We
further explain how to obtain modality-specific predictions
below.

The skeleton joint input is fed into the graph convolution
model introduced in Equation 4. Thus, the prediction of
skeleton joints can be defined as

7 = (0 (0r09))

where G represents the graph convolutional operation
defined in Equation 4. © ; denotes the learnable parameters
of the GCN submodel. J( is a data sample of skeleton joint
input. While o denotes a linear layer that transforms the
shape of the submodel output to a one hot representation,
which is also used in Equations 8 and 9.

The skeleton bone input is essentially a transformation of
skeleton joint input. Recall that in the graph, the edge set is
defined as £ = {(Uti—’ljtj)‘vti, Utj = th,t = 1, . ,T, i, j =
1,..., M}, which includes all combinations of joint pairs
represented in the adjacency matrix A. Based on the actual
structure of skeleton bones in the specific dataset, we follow
the transformation method in [2], [4] to build skeleton bones.
For example, given two joint vectors vy = (z1,y1,21) and
vig = (Z2,Y2,22), the bone vector can be calculated as
By =¢4 = vn — v = (£1 — T2, Y1 — Y2, 21 — 22). We
apply the same graph convolutional operation method to
skeleton bone input, which can be represented as

<o (G (00.5)

where Gp represents the graph convolutional operation
defined in Equation 4. © g denotes learnable parameters of
the GCN submodel. B() is a data sample of skeleton bone
input.

Recall that we have proposed the ST-ROI as the trans-
formed form of RGB video input, which can substantially
reduce the data volume and maintain core discriminative
information for HAR. As the ST-ROI is intrinsically a 2D
feature map, we adopt the ResNet proposed by He et al.
[21] to learn features from it. The one hot representation of
ResNet can be formulated as

gv(” — 0 (GV (R’(i),G)V) + R/(i))

®)

)

(10)

where Gy (R’ @) @V) represents the residual mapping to

be learned, and ©y denotes learnable parameters based on
the number of ResNet layers [21].
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Given the definitions of the above submodel predictions,
we formulate the optimization problem per the following
objectives:

. N (i)
ar%rmn— E i E yclog( T )
B D e —

11)
Lp
. N L J@®
ar%ljnn — Zi:l Z yclog < ) (12)
Ly
arg min — Z Z yclog ( ) (13)
—,_/

Lv

where £, L and Ly are cross-entropy losses that enforce
the prediction ability from the skeleton joints, skeleton
bones, and RGB video, respectively. N, is the number of
action classes in a specific dataset. N denotes the number of
samples in the training set.

3.5 Training and Optimization

Several other loss terms could be adopted for joint weights
to pursue high recognition accuracy. For instance, according
to the findings in [44], both the loss that encourages joint
weights to maintain diversity and the loss that leads to joint
weights with temporal variance can elicit slight recognition
improvements. To ease the process of validating the effec-
tiveness of our MMNet, we avoided using such fine-tuning
and hyperparameter-tuning skills. Rather, we adopted a
vanilla implementation of joint weights that acts as spatial
attention on the RGB modality to verify the effectiveness of
our novel model-based data fusion mechanism. Given the
objective function, we solved Equations 11, 12, and 13 using
stochastic gradient descent (SGD). Note that the network
G j can be either pretrained or simultaneously trained with
Gy to derive spatial attention weights for feature fusion.
Therefore, the submodels G; and Gy can be trained end-
to-end by tuning the O; together with ©y or simply by
updating the ©y with the ©; being fixed. Meanwhile, the
network Gp for skeleton bones is trained separately and
aggregated to the results of G; and Gy to deliver the
ensemble prediction. Specific training steps are illustrated
in Algorithm 1.

4 EXPERIMENTS

We evaluated the proposed method on five public indoor
HAR datasets: NTU RGB+D 60 [8], NTU RGB+D 120 [10],
PKU-MMD [23], Northwestern-UCLA Multiview [24], and
Toyota Smarthome [57]. To the best of our knowledge, the
first three datasets constitute the top 3 largest datasets
collected with Microsoft Kinect v2 [58]. Microsoft Kinect
v2 is capable of tracking up to six human body skeletons,
each of which has 25 skeleton joints. Northwestern-UCLA
Multiview was gathered via Microsoft Kinect vl and con-
tains 20 skeleton joints. We did not perform experiments on
other, relatively smaller datasets such as RGBD-HuDaAct
[59], MSR Daily Activity 3D [60], or 3D Action Pairs [61]
because they were nearly 100% recognized by [49]. We
conducted extensive ablation experiments on each dataset

Algorithm 1 MMNet Optimization

Input:
J= {J(i) | i=1,.. .,N}: skeleton joints
B=.BW | i=1,..., N |: skeleton bones

V=:V@ | i=1,...,N¢:RGB videos
M’: the number of spatial ROIs

L: the number of temporal ROIs
Procedure:

1: Train G ; with skeleton joints J.

2: Construct a M’ x L ST-ROI R from the RGB video V.

3: Extract joint weights w by feeding J to the trained G ;.

4: Construct skeleton-focused ST-ROI R’ from the results
of Steps 2 and 3.

5: Train Gy with R'.

6: Train G g with skeleton bones B.

7: Aggregate prediction results in Steps 1, 5, and 6.

Output:
Trained MMNet including submodels: G ;, Gg, and Gy

to verify the contribution of the proposed fusion scheme
and to identify the best empirical practice for training our
MMNet as follows:

1) “Skeleton Joint”: This model is the GCN submodel
implemented with ST-GCN [1] for the skeleton
joint stream, by which joint weights for the RGB
modality can be learned.

2) “Skeleton Bone”: This model is another GCN sub-
model implemented using ST-GCN [1] for the
skeleton bone stream transformed from the skele-
ton joint modality.

3) “RGB Video (No Joint Weights)”: This submodel

is implemented with ResNet18 [21] for the RGB

modality of the proposed MMNet without knowl-
edge of the skeleton modality.

“RGB Video (Dynamic Weights)”: This submodel

is implemented with ResNetl8 [21] for the RGB

modality with joint weights of the skeleton modal-
ity. Here, “Dynamic” refers to tuning the GCN
model together with “ResNet18.”

5) “RGB Video (Fixed Weights)”: This model is im-
plemented with ResNet18 [21] for the RGB modal-
ity with joint weights from the pretrained “GCN-
Joints.” Here, “Fixed” means training “ResNet18”
without updating the parameters of “GCN-Joints.”

6) Further improvements to the skeleton modality:
This implementation is intended to further ver-
ify the contribution of the proposed MMNet in
enhancing the performance of more advanced
skeleton-based methods by aggregating the results
of the RGB modality with those of skeleton-based
models (i.e., 2s-AGCN [2] and MS-G3D [4]) that
use both skeleton joint and bone streams.

4)

4.1 Evaluation Datasets

NTU RGB+D 60 dataset [8] contains 56, 880 samples of 60
different actions including individual activities, interactions
between multiple people, and health-related events. The
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actions were performed by 40 subjects and recorded from
80 viewpoints.

NTU RGB+D 120 dataset [10] extends NTU RGB+D
60 to 120 action classes with an additional 57,600 samples
of 60 extra action classes, which makes it relatively more
difficult. The dataset has 114,480 samples captured from
106 different subjects with 155 distinct viewpoints.

PKU-MMD dataset [23] contains 1076 long, untrimmed
video and skeleton sequences. The dataset was performed
by 66 subjects from three camera views. With 51 anno-
tated action categories, we retrieved 21, 545 valid action se-
quences and 6 invalid samples that had no skeleton frames.

Northwestern-UCLA Multiview dataset [24] has 12 ac-
tion categories, each performed by 10 actors. It contains
1,494 total samples: 518 from View 1, 509 from View 2, and
467 from View 3.

Toyota Smarthome dataset [57] is a real-world dataset
that has 31 actions performed by 18 subjects. It contains
16,115 samples collected from 7 viewpoints.

4.2

In our experiments, we performed sampling using the RGB
video sequence to build the ST-ROI. This sampling strategy
not only reduced the large data volume of the RGB modality
but also made the modality suitable for feature extraction
with ordinary CNN models. Moreover, this approach en-
abled us to vary the input data via random selection. Given
that we wished to obtain object and movement information
from body areas including the hands, feet, and head, we set
M’ to 5 to construct the spatial sub-ST-ROL For the temporal
dimension, we empirically set the L to 5 to effectively cover
variations in temporal appearance, as larger values of L will
lead to redundant appearance information.

For the RGB modality, the height and width of sub-ST-
ROIs of action sequences in NTU RGB+D 60, NTU RGB+D
120, and PKU-MMD were each 96 pixels. For Northwestern-
UCLA and Toyota Smarthome, the height and width of sub-
ST-ROIs were 48 pixels, as data were collected with Kinect
v1. Therefore, the input size for the NTU RGB+D 60, NTU
RGB+D 120, PKU-MMD, Northwestern-UCLA, and Toyota
Smarthome datasets were 480 x 480, 480 x 480, 480 x 480,
240 x 240, and 240 x 240, respectively. The ST-ROIs of the
four datasets were resized to 225 x 225 and normalized
before being fed into ResNet. As the data volume of the
Northwestern-UCLA and Toyota Smarthome datasets were
relatively small, we performed random selection on the
RGB video frames and randomly flipped them. We adopted
ResNet18, which has 18 layers, for all datasets. For NTU
RGB+D 60, NTU RGB+D 120, and PKU-MMD, we evenly
selected frames based on the video length for training and
testing.

For the submodel of the skeleton modality, we used the
GCN implementation in [1], [2], and [4] for all datasets.
The preprocessing method in [4] was also used for all
datasets. To calculate spatial weights, we adopted the GCN
model in [1]. Then, to alleviate the effect of smoothing out
joint weights by the mean values of temporal positions, we
empirically selected the top 15 valued temporal positions to
calculate the joint weight for Equation 5.

The SGD optimizer was used for all implementations
with the initial learning rate set to 0.1, which was divided

Implementation Details

TABLE 1
Ablation study for NTU RGB+D with X-Sub and X-View protocols.
* denotes our implementation. 1 uses the Kinect v2 2D skeleton.

[ # | Methods | X-Sub | X-View ]
1 Skeleton Joint [1] 80.4% 90.1%
2 Skeleton Bone [1] 84.4% 93.1%
3 | Ensemble (#1+#2) 85.8% 93.3%
4 | ST-ROI (No Joint Weights) 72.7% 81.3%
5 | ST-ROI (Dynamic Weights) 73.8% 85.2%
6 | ST-ROI (Fixed Weights) 76.8% 86.2%
7 | ST-ROI (Fixed Weights)t 72.0% | 754%
8 | Ensemble (#3+#4) 90.7% 96.5%
9 | Ensemble (#3+#5) 90.8% 96.6%
10 | Ensemble (#3+#6) 91.2% 97.0%
11 | 2s-AGCN (Joint+Bone) [2] 88.5% 95.1%
12 | MS-G3D (Joint+Bone) [4] 91.5% 96.2%
13 | CTR-GCN* (Joint+Bone) [62] | 92.2% 96.1%
14 | Ensemble (#11+#6) 92.4% 97.3%
15 | Ensemble (#12+#7) 92.7% 97.0%
16 | Ensemble (#12+#6) 93.9% 98.0%
17 | Ensemble (#13+#6) 94.2% 97.8%

by 10 at the 10th and 50th epochs. The training process was
terminated at the 80th epoch. The minibatch size was set to
64. All experiments were conducted on a workstation with
4 GTX 1080 Ti GPUs.

4.3 Experiments on NTU RGB+D 60

The NTU RGB+D dataset provides two evaluation proto-
cols, namely cross-subject (X-Sub) and cross-view (X-View)
[8]. For the X-Sub protocol, half of the subjects were used
for training and the other half were used for testing. For
the X-View evaluation protocol, samples of 2/3 viewpoints
were used for training, and those of the remaining 1/3
unseen viewpoints were used for testing. Table 1 shows the
evaluation results of our ablation study based on the X-Sub
and X-View evaluation protocols.

In Table 1, findings on different training strategies for
the submodel of the RGB modality appear in rows #4, #5,
and #6. The ensemble results of these training strategies are
illustrated in rows #8, #9, and #10. We observed that the
joint weights could improve submodel performance for the
RGB modality, such that training with fixed joint weights
outperformed training with dynamic weights. Moreover,
the ensemble results of MMNet demonstrated consistent
findings in rows #8, #9, and #10 compared with those in
rows #4, #5, and #6. Furthermore, the ensemble results
from rows #13 and #15 indicate that our MMNet could
significantly improve the existing representative skeleton-
based methods 2s-AGCN [2] and MS-G3D [4]. Precisely,
our approach enhanced the results of 2s-AGCN [2] by 3.9%
and 2.2% for the X-Sub and X-View evaluation protocols,
respectively. It improved the results of MS-G3D [4] by 2.4%
and 1.8% for the X-Sub and X-View evaluation protocols,
respectively. It is also worth noting that, upon comparing
rows #14 and #15 of Table 1, the implementation of ST-ROI
with 2D skeleton data retrieved from OpenPose can alleviate
noise in the 2D skeleton from the Kinect v2 sensor as this
implementation achieves better performance.

To further verify the performance boost using the pro-
posed MMNet, we calculated performance improvements
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TABLE 2
Improvements in actions of NTU RGB+D that are difficult to address
using skeleton-based methods.

[ Action | #3 #3+16 | #11 #1146 | #12 #12+#6 |

11 | 436 615(+17.9) | 557 67.0 (+114) | 711  77.7 (+6.6)
S 12 | 460 658(+199) | 537 695 (+158) | 574 684 (+11.0)
S 30 | 593 785(+19.3) | 702 858(+156) | 764 887 (+12.4)
£ 31 | 736 841(+105) | 768 85.1(+83) | 859 884 (+2.5)

53 | 917 964 (+47) | 895 964 (+69) | 92.8  97.1 (+4.3)
11 | 670 759(+89) | 743 797 (+54) | 838  89.2(+54)
S 12 | 651 854(+203) | 64.8 844 (+197) | 721 854 (+13.3)
2 30 | 69.9 93.4(+234) | 791 949 (+158) | 829 975 (+14.6)
'>>T< 31 | 952 975(+22) | 946 968 (+22) | 956 975 (+1.9)

53 | 924 975(+5.1) | 921  98.1(+6.0) | 965 987 (+2.2)
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Fig. 6. Recognition accuracy per action on NTU RGB+D 60 (X-Sub).
Action names in red and underlined are relatively more difficult actions.

for the challenging actions indicated in Fig. 1. Table 2 il-
lustrates performance improvements for these actions com-
pared with skeleton-based models #3, #11, and #12, corre-
sponding to those in Table 1. Of note, the recognition accu-
racy for difficult actions on NTU RGB+D was substantially
improved under the two evaluation protocols. Moreover,
our MMNet enhanced the recognition accuracy of these
actions and of other actions more generally (see Fig. 6).
Table 3 presents a comparison of MMNet with state-of-
the-art methods on the NTU RGB+D dataset. Results show
that our method greatly outperformed existing unimodal
methods and performed competitive with existing multi-
modal methods. Regarding skeleton-based approaches, our
method exceeded the performance of MS-G3D [4] by 2.4%
and 1.8% for the X-Sub and X-View evaluation proto-
cols, respectively. Regarding RGB video-based methods,
our method outperformed Glimpse Clouds [44] by 7.3%
and 4.8% for the X-Sub and X-View evaluation protocols,
respectively. Among existing multimodal methods, our find-
ings also surpassed the TSMF [22] by 1.4% and 0.6% for
the X-Sub and X-View evaluation protocols, respectively.
In addition to the vanilla implemention using ResNet18
in [22], we observed that the Inception-v3 [72] that factor-
ized n X n convolution to 1 X n and n X 1 asymmetric
convolutions can better represent the discontinuous data
form of ST-ROI. Other more advanced backbones such as

TABLE 3
Comparison of NTU RGB+D with X-Sub and X-View protocols. S and R
denote skeleton and RGB modalities, respectively. Bold accuracy
indicates the best. The second best is underlined.

Methods

Lie Group [63]

Dynamic Skeletons [64]
Part-aware LSTM [8]

ST-LSTM [9]

STA-LSTM [65]

GCA-LSTM [33]

View-invariant [31]

ST-GCN [1]

CNN-based [66]

DPRL+GCNN [67]

HCN [35]

25-AGCN [2]

AGC-LSTM [3]

SRNet [68]

DGNN [36]

MS-G3D Net [4]

CTR-GCN [62]

C3D [7]

Glimpse Clouds [44]

ST-LSTM [9]

DSSCA - SSLM [49]

STA-Hands [51]

Hands Attention [52]

S-Res-LSTM [69]

Body Pose Evolution Map [70]
TSMF [22]

VPN [53] (I3D)

VPN [53] (RNX3D101)

VPN++ + 3D Poses [71] (RNX3D101)
Our MMNet (ResNetl18, L = 5)
Our MMNet (Inception-v3, L = 5)
Our MMNet (Swin-Transformer-B, L = 5)
Our MMNet (EfficientNet-B7, L = 5)

SN N N N N U N N N N NN

[ R [ x-Sub
- ] 501%
60.2%
- | 62.9%
69.2%
- | 734%
- | 7a4%
80.0%
- | 815%
83.2%
- | 835%
- | 865%
88.5%
- | 89.2%
- | 873%
- | 89.9%
- | 915%
92.4%
63.5%
86.6%
73.2%
74.9%
82.5%
84.8%
90.0%
91.7%
92.5%
93.5%
95.5%
96.6%
94.2%
95.3%
95.6%
96.0%

‘ X-View ‘
52.8%
65.2%
70.3%
77.7%
81.2%
82.8%
87.2%
88.3%
89.3%
89.8%
91.1%
95.1%
95.0%
91.3%
96.1%
96.2%
96.8%
70.3%
93.2%
80.6%

88.6%
90.6%
96.3%
95.3%
97.4%
96.2%
98.0%
99.1%
97.8%
98.4%
98.7%
98.8%

LU
AN A N N N NS

EfficientNet [73] and Swin-Transformer [74] can further
improve the performance via our ST-ROI, which is ranked
the second best among state-of-the-art methods. Compared
with VPN++, our method achieves better performance on
the larger version of NTU RGB+D 60 (i.e., NTU RGB+D 120)
and Northwestern-UCLA Multiview (see Tables 7 and 11).

4.4 Experiments on NTU RGB+D 120

The NTU RGB+D 120 dataset provides two evaluation
protocols: cross-subject (X-Sub) and cross-setup (X-Set) [10].
For the X-Sub protocol, 63,026 samples collected from 53
subjects were used for training while the remaining 50,919
samples were used for testing. For the X-Set protocol, 54, 468
samples from the first half of camera setups were used for
training, and 59, 477 samples from the second half of camera
setups were applied in testing. Table 5 lists the evaluation
results of our ablation study with the X-Sub and X-Set
evaluation protocols.

In Table 5, findings based on different training strategies
for the submodel of the RGB modality are displayed in
rows #4, #5, and #6. The ensemble results for these training
strategies appear in rows #8, #9, and #10. The joint weights
were found to improve submodel performance for the RGB
modality, such that training with fixed joint weights out-
performed training with dynamic weights. Moreover, the
ensemble results for MMNet were consistent in rows #8,
#9, and #10 compared with findings in rows #4, #5, and
#6. Furthermore, the ensemble results in rows #13 and #15
indicate that our MMNet could significantly enhance the
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TABLE 4
Action recognition improvements on NTU RGB+D 120 dataset by aggregating the results of ensemble (#12+#6) compared with the top 10
accurate and confused actions of skeleton-based method MS-G3D.

‘ Protocol ‘ Top 10 accurate actions (ID) ‘ MS-G3D ‘ #12+#6 ‘ Top 10 confused actions (ID) ‘ MS-G3D ‘ #12+#6 ‘

1. walking towards each other (59) 100.0% 100.0% (+0.0%) | 1. staple book (73) 34.9% 35.6% (+0.7%)
2. jump up (27) 99.6% 100.0% (+0.4%) | 2. counting money (74) 57.0% 58.1% (+1.1%)
3. staggering (42) 99.6% 99.6% (+0.0%) 3. make victory sign (72) 59.7% 59.7% (+0.0%)
4. arm swings (98) 99.5% 99.5% (+0.0%) 4. make OK sign (71) 60.9% 63.1% (+2.3%)

X-Sub 5. hugging other person (55) 99.3% 100.0% (+0.7%) | 5. writing (12) 62.5% 78.7% (+16.2%)
6. cheers and drink (113) 99.1% 99.7% (+0.5%) | 6. playing with phone/tablet (29) 67.3% 87.3% (+20.0%)
7. wear jacket (14) 98.9% 100.0% (+1.1%) | 7. hit with object (106) 67.7% 74.1% (+6.4%)
8. high-five (112) 98.8% 99.3% (+0.5%) | 8. cutting nails (75) 68.9% 85.1% (+16.2%)
9. falling (43) 98.5% 99.3% (+0.7%) | 9. cutting paper (76) 70.5% 79.2% (+8.7%)
10. arm circles (97) 98.4% 99.0% (+0.5%) 10. blow nose (105) 71.1% 80.5% (+9.4%)
1. walking towards each other (59) 98.8% 99.8% (+1.0%) 1. staple book (73) 57.0% 56.4% (-0.6%)
2. wear jacket (14) 98.6% 99.2% (+0.6%) | 2. writing (12) 60.0% 78.1% (+18.1%)
3. standing up (9) 98.6% 99.6% (+1.0%) | 3. cutting paper (76) 62.3% 71.5% (+9.2%)
4. nod head /bow (35) 98.4% 99.2% (+0.8%) | 4. make victory sign (72) 66.7% 67.8% (+1.0%)

X-Set 5. hopping (one foot jumping) (26) 98.4% 99.6% (+1.2%) | 5. counting money (74) 67.3% 66.3% (-1.0%)
6. arm circles (97) 98.2% 99.4% (+1.2%) | 6. reading (11) 68.4% 74.6% (+6.2%)
7. staggering (42) 98.0% 99.2% (+1.2%) 7. yawn (103) 69.3% 82.1% (+12.8%)
8. cheers and drink (113) 98.0% 98.0% (+0.0%) 8. cutting nails (75) 71.5% 83.4% (+11.9%)
9. cross toe touch (101) 97.8% 99.8% (+2.0%) | 9. make OK sign (71) 72.0% 71.6% (-0.4%)
10. arm swings (98) 97.8% 99.2% (+1.4%) 10. blow nose (105) 72.1% 86.4% (+14.3%)

TABLE 5
Ablation study for NTU RGB+D 120 with X-Sub and X-Set protocols.
* denotes our implementation. 1 uses the Kinect v2 2D skeleton.

‘ # ‘ Methods ‘ X-Sub ‘ X-Set ‘
1 Skeleton Joint [1] 79.0% | 81.3%
2 Skeleton Bone [1] 81.0% | 82.4%
3 | Ensemble (#1+#2) 83.5% | 85.2%
4 | ST-ROI (No Joint Weights) 67.2% | 71.7%
5 | ST-ROI (Dynamic Weights) | 69.7% | 74.2%
6 | ST-ROI (Fixed Weights) 71.7% | 74.4%
7 | ST-ROI (Fixed Weights)f 60.3% | 58.8%
8 Ensemble (#3+#4) 88.2% | 90.5%
9 | Ensemble (#3+#5) 88.3% | 90.5%
10 | Ensemble (#3+#6) 88.6% | 90.7%
11 | 2s-AGCN* (Joint+Bone) [2] | 84.2% | 86.0%
12 | MS-G3D* (Joint+Bone) [4] 87.2% | 88.4%
13 | Ensemble (#11+#6) 88.9% | 91.0%
14 | Ensemble (#12+#7) 88.9% | 89.7%
15 | Ensemble (#12+#6) 90.3% | 92.1%

representative skeleton-based methods 2s-AGCN [2] and
MS-G3D [4]. More precisely, our method improved the
results of 2s-AGCN [2] by 3.9% and 2.2% for the X-Sub
and X-View evaluation protocols, respectively. It improved
the results of MS-G3D [4] by 2.4% and 1.8% for the X-Sub
and X-View evaluation protocols, respectively. The results
of implementing ST-ROI with 2D skeleton data from Kinect
v2 (see rows #7 and #14 of Table 5) is consistent with those
for NTU RGB+D 60.

As Table 6 shows, we conducted further ablation on
NTU RGB+D 120 to compare our method with VPN [53]
regarding inference time, the numbers of model parameters,
and floating point operations (FLOPs). We tested 1, 000 on a
single GTX 1080 Ti with the batch size of 1, and reported the
average inference time, which also includes the processing
time of OpenPose [54] tool (36ms per RGB frame). We used

MS-G3D

MMNet (Ensemble #11+#6)

Fig. 7. Confusion matrices of MS-G3D and ensemble (#12+#6) on NTU
RGB+D 120 with X-Sub protocol. Darker color in off-diagonal areas on
the right side confusion matrix comparing with the left one indicates the
improvements.

fvcore! to calculate the FLOPs. Although our submodel for
the RGB modality implemented with ResNetl8 does not
perform as well as I3D, it can effectively contribute to the
ensemble results with smaller number of model parameters.
More precisely, the simplest version of our method (i.e., the
method in row #8 of Table 6, which only uses the skeleton
joint stream and the basic GCN model) can perform better
than the state-of-the-art multimodal method VPN. It is also
worth noting that VPN relies on the video-based model I3D
which requires 64 RGB video frames; our method uses the
relatively smaller model ResNet18 and requires only 5 RGB
video frames. Compared with VPN, our MMNet is relatively
more lightweight and achieves better performance with
shorter inference time (see Table 6). Without considering the
models size, our MMNet can be further improved by im-
plementing the RGB modality with Inception-v3. Regarding
the weakness of our approach, our MMNet does not rely
on video-based methods that incorporate features into the

1. fvcore: https:/ / github.com/facebookresearch/fvcore.git
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TABLE 6
Ablation study for comparison with VPN on NTU RGB+D 120 under X-Sub and X-Set protocols. L and M’ indicate the numbers of RGB frames
and body parts, respectively. Better performances are in bold based on using skeleton joint only (i.e., no skeleton bone).

‘ # ‘ Methods ‘ Backbone ‘ L ‘ M’ ‘ Inference Time ‘ Parameters ‘ FLOPs ‘ X-Sub ‘ X-Set ‘
1 | Skeleton Joint GCN [1] - - 0.013s 3.1M 17.2G 79.0% | 81.3%
2 | Skeleton Bone GCN [1] - - 0.013s 3.1M 17.2G 81.0% | 82.4%
3 | Ensemble (#1+#2) GCN [1] - - 0.026s 6.2M 34.4G 83.5% | 85.2%
4 | ST-ROI (Fixed Weights) ResNet18 [21] 5 5 0.270s 14.4M 19.2G 71.7% | 74.4%
5 | ST-ROI (Fixed Weights) Inception-v3 [72] 5 5 0.329s 27.8M 23.0G 79.9% | 82.0%
6 | RGB Video [53] 13D [5] 64 | 25 0.3s 12.1M 107.9G | 77.0% | 80.1%
7 | VPN [53] GCNs+I3D 64 | 25 65s 24.0M - 86.3% | 87.8%
8 | Ensemble (#1+#4) GCN+ResNet18 5 5 0.283s 14.4M 19.2G 86.6% | 88.7%
9 | Ensemble (#2+#4) GCN+ResNet18 5 5 0.283s 17.5M 36.4G 87.1% | 89.4%
10 | Ensemble (#3+#4) GCN+ResNet18 5 5 0.296s 17.5M 36.4G 88.6% | 90.7%
11 | Ensemble (#3+#5) GCN-+Inception-v3 5 5 0.355s 30.9M 40.2G 91.5% | 93.2%
12 | TSMF [22] MS-G3D+ResNet18 5 5 0.359s 20.8M 85.4G 87.0% | 89.1%
13 | MMNet (Inception-v3) MS-G3D+Inception-v3 | 5 5 0.418s 34.2M 89.2G 92.9% | 94.4%

TABLE 7 TABLE 8

Comparison of NTU RGB+D 120 with X-Sub and X-Set protocols. S
and R denote skeleton and RGB modalities, respectively. * denotes our
implementation.

| Methods | S [ R [ x-Sub | X-Set |
Spatiotemporal LSTM [75] v | - | 55.7% | 57.9%
Internal Feature Fusion [9] v | - 58.2% | 60.9%
GCA-LSTM [9] v | - | 583% | 59.2%
Multi-Task Learning Network [76] v | - 58.4% | 57.9%
FSNet [77] Vo - | 599% | 62.4%
ST-GCN* (Joint+Bone) [1] v | - | 835% | 852%
2s-AGCN* (Joint+Bone) [2] v | - 84.2% | 86.0%
MS-G3D [4] v | - | 86.9% | 884%
CTR-GCN [62] V| - | 889% | 90.6%
Baseline [10] Vv 612% | 631%
Two-Stream Attention LSTM [78] V| V| 612% | 633%
Multi-Task CNN with RotClips [79] | / | / | 622% | 61.8%
VPN [53] vV | V| 863% | 87.8%
TSMF [22] v | V| 87.0% | 89.1%
VPN++ + 3D Poses [71] VoIV | 90.7% | 92.5%
Our MMNet (ResNetl8, L = 5) Vo V| 90.3% | 92.1%
Our MMNet (Inception-v3, L = 5) Vo V| 929% | 94.4%

background scenes. Our method thus has limitations similar
to skeleton-based methods for outdoor actions according to
our discussion in Section 5. VPN relies on the I3D backbone,
which makes it possible to improve performance on the
Kinetics dataset.

Following the analysis in [10], we plotted a confusion
matrix to analyze the effectiveness of our method. Fig. 7 de-
picts the confusion matrices corresponding to results for the
MS-G3D and ensemble ( #12+#6) methods on NTU RGB+D
120 with the X-Sub evaluation protocol. Improvements were
apparent across several areas of the two confusion matrices.
To extend our analysis based on the confusion matrices in
Fig. 7, we conducted action-wise analysis for the proposed
MMNet. In particular, we analyzed the top 10 actions that
were accurately recognized and the top 10 actions that
confused the state-of-the-art skeleton-based model (i.e., MS-
G3D); results are listed in Table 4. Although the top 10
recognized actions exhibited high recognition accuracy, our
MMNet could further improve highly recognized actions in
the X-Sub and X-Set evaluation protocols. Based on the top
10 confused actions in Table 4, we found that the recognition
accuracy for Actions 11 and 12 (i.e., “reading” and “writ-

Ablation study for PKU-MMD with X-Sub and X-View protocols. *
denotes our implementation.

[ # [ Methods | X-Sub | X-View |
1 Skeleton Joint [1] 91.5% 92.4%
2 Skeleton Bone [1] 93.4% 95.1%
3 | Ensemble (#1+#2) 94.6% 96.3%
4 | ST-ROI (No Joint Weights) 81.3% 77 4%
5 | ST-ROI (Dynamic Weights) | 81.6% 76.2%
6 | ST-ROI (Fixed Weights) 83.0% 82.2%
7 | Ensemble (#3+#4) 95.8% 97.1%
8 | Ensemble (#3+#5) 95.9% 97.2%
9 | Ensemble (#3+#6) 96.0% 97.5%
10 | 2s-AGCNF* (Joint+Bone) [2] | 94.7% 96.8%
11 | MS-G3D* (Joint+Bone) [4] 95.5% 97.1%
12 | Ensemble (#10+#6) 96.1% 97.8%
13 | Ensemble (#11+#6) 96.3% 98.0%

ing”) improved substantially when using our proposed
MMNet. Most other confused actions, such as “playing with
phone/tablet,” “cutting nails,” “yawn,” and “blow nose,”
were also recognized with significant improvements. The
relatively lower (or nonexistent) improvement associated
with actions such as “staple book” and “counting money”
could be due to a lack of discriminative features in the
skeleton and RGB video modalities. For other challenging
actions such as “make victory sign” and “make OK sign,”
limited or nonexistent improvement may have occurred
because these actions are more fine-grained and require
higher resolution in the RGB video modality for recognition.

Table 7 shows a comparison of our method with state-
of-the-art approaches on NTU RGB+D 120. Our approach
greatly outperformed existing unimodal and multimodal
methods. Regarding skeleton-based methods, our method
exceeded the state-of-the-art performance of CTR-GCN [62]
by 4.0% and 3.8% for the X-Sub and X-Set evaluation
protocols, respectively. Regarding multimodal methods, our
method outperformed VPN++ [71] by 2.2% and 1.9% for
the X-Sub and X-Set evaluation protocols, respectively.

4.5 Experiments on PKU-MMD

The PKU-MMD dataset [23] provides evaluation protocols
similar to NTU RGB+D 60, specifically cross-subject (X-Sub)
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TABLE 9
Comparison of PKU-MMD with X-Sub and X-View protocols. S and R
denote skeleton and RGB modalities, respectively.

Methods ‘

JCRRNN [80]

Skeleton boxes [81]

STA-LSTM [65]

CNN-based [66]

HCN [35]

SRNet [68]

TSMF [22]

Our MMNet (ResNetl8, L = 5)

Our MMNet (Inception-v3, L = 5)
Our MMNet (Swin-Transformer-B, L = 5)
Our MMNet (EfficientNet-B7, L = 5)

X-Sub ‘ X-View ‘
32.5% 53.3%
54.8% 94.2%
86.9% 92.6%
90.4% 93.7%
92.6% 94.2%
93.1% 97.0%
95.8% 97.8%
96.3% 98.0%
97.2% 98.1%
97.3% 98.1%
97.4% 98.6%

=

LUK »

LAULKK

and cross-view (X-View). As Table 8 shows, the ablation
study for PKU-MMD revealed consistent results compared
with NTU RGB+D and NTU RGB+D 120 as illustrated in
Table 1 and Table 5, respectively. The PKU-MMD, NTU
RGB+D 60, and NTU RGB+D 120 datasets were similar, as
they were collected using the same sensor and share the
same data characteristics.

Compared with existing methods, our MMNet appeared
to achieve the best performance on PKU-MMD under the
X-Sub and X-View evaluation protocols. Table 9 presents
a comparison based on PKU-MMD with state-of-the-art
methods. Given that our previous version in [22] already
achieved high recognition accuracy under the X-Sub and X-
View protocols, our method continued to boost the accuracy
in the current study to 97.4% and 98.6% for the X-Sub and
X-View protocols, respectively.

4.6 Experiments on Northwestern-UCLA Multiview

Northwestern-UCLA Multiview were gathered via Kinect
vl from three views. We followed the cross-view evalua-
tion protocols defined by [24]. Table 10 shows an ablation
study using the Northwestern-UCLA Multiview dataset
with three cross-view evaluation protocols: V3, V25, and
V21’3. Here, ijQ indicates the use of samples from the first
two views for training, whereas samples in the third view
were used for testing. The results in Table 10 are consistent
with those of the other three datasets examined in this paper.
Notably, the recognition accuracy for Northwestern-UCLA
Multiview data was not as strong overall as for the other
three larger datasets. Essentially, our method is data-driven
and relies on a large amount of training data. Another
interesting finding is that the performance on Vj'; was
not as good as for the other two evaluation protocols. We
found that View 1 was in the middle of the data collection
environment, while Views 2 and 3 were at either side of the
data collection environment. This difference may explain the
dataset shift between the training and test cases for V21 3 and
thus why recognition was more challenging than for the
other two evaluation protocols.

Table 11 presents a comparison of the Northwestern-
UCLA Multiview dataset with state-of-the-art methods.
These results appear to verify the effectiveness of MMNet,
which achieved state-of-the-art recognition accuracy for the
last two cross-view protocols and the second best for the
first protocol. The improvement over existing methods was

12

TABLE 10
Ablation study for Northwestern-UCLA Multiview with three cross-view
settings. * denotes our implementation.

[ # | Methods [ v, [ V25 | vy |
1 Skeleton Joint [1] 84.2% | 82.1% | 69.2%
2 Skeleton Bone [1] 80.8% | 83.5% | 70.9%
3 | Ensemble (#1+#2) 86.2% | 83.9% | 74.0%
4 | ST-ROI (No Joint Weights) 39.7% | 50.1% | 35.5%
5 | ST-ROI (Dynamic Weights) | 53.1% | 20.9% | 15.9%
6 | ST-ROI (Fixed Weights) 61.8% | 70.2% | 49.4%
7 | Ensemble (#3+#4) 87.3% | 85.1% | 73.5%
8 | Ensemble (#3+#5) 86.8% | 84.7% | 74.4%
9 | Ensemble (#3+#6) 87.7% | 85.1% | 76.6%
10 | 2s-AGCN* (Joint+Bone) [2] | 87.3% | 81.3% | 69.2%
11 | MS-G3D* (Joint+Bone) [4] 92.7% | 89.7% | 82.4%
12 | Ensemble (#10+#6) 88.8% | 82.9% | 73.3%
13 | Ensemble (#11+#6) 93.3% | 91.1% | 83.7%

TABLE 11

Comparison of Northwestern-UCLA Multiview with three cross-view
settings. S and R denote skeleton and RGB modalities, respectively.

‘ Methods

Lie Group [63]

HBRNN-L [82]

View-invariant [31]

Ensemble TS-LSTM [83]
AGC-LSTM [3]

CTR-GCN [62]

Hankelets [84]

nCTE [85]

NKTM [86]

Glimpse Clouds [44]

VPN [53]

VPN++ + 3D Poses [71]

Our MMNet (ResNet18, L = 5)
Our MMNet (ResNet18, L = 7)

B S SN N N )

‘ R‘ Vi, ‘ Vs ‘ Vas ‘
- 74.2% - -

78.5%
86.1%
89.2%
93.3%
96.5%
45.2%
68.6%
75.8%
90.1%
93.5%
93.5%
93.3%
93.7%

52.1%
59.1%
83.4%

68.3%
73.3%
89.5%

83.7%
82.6%

91.1%
89.9%

NSNS
L

not as significant as for the other three datasets because
Northwestern-UCLA Multiview had an insufficient size
for our data-driven method. Additionally, the dataset was
gathered with the Kinect v1 sensor, which could provide
neither skeleton data as accurately as Kinect v2 nor RGB
video data at a resolution as high as Kinect v2. Based
on this cross-dataset comparison, using Kinect v2 for data
collection together with a larger dataset could influence
action recognition accuracy in RGB-D videos.

4.7 Experiments on Toyota Smarthome

The Toyota Smarthome dataset provides three evaluation
protocols: cross-subject (CS), cross-view 1 (C'V;) and cross-
view 2 (C'V3) [57]. Following the three evaluation protocols
in [57], we conducted ablations as shown in Table 12. The
ablation study of evaluation protocol C'S shows consistent
results with those of other datasets. For evaluation protocols
CVy and CV,, advanced GCN models such as 2s-AGCN
and CTR-GCN cannot gain single modal performance im-
provements due to the small amount of training data. Note
that, excluding empty skeleton samples, there are 1, 877 and
7,735 training samples in evaluation protocols C'V; and
C'Vs, respectively. While evaluation protocol C'S has 10, 614
training samples, which is relatively more on par with those
of other datasets.
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Fig. 8. Visualization of neuron activation values for different skeleton joints along their temporal positions and cropped sample frames of video input.
This visualization shows the idea of selecting top-t positions to calculate joint weights for their corresponding body areas.

TABLE 12
Ablation study for Toyota Smarthome with three evaluation protocols.
* denotes our implementation. 1 uses the original 2D skeleton.

[ # | Methods [ cs [ owi | cve |
1 Skeleton Joint [1] 66.6% | 44.1% | 53.8%
2 | Skeleton Bone [1] 66.3% | 36.5% | 53.1%
3 Ensemble (#1+#2) 70.8% | 44.4% | 59.1%
4 ST-ROI (No Joint Weights) 54.6% | 47.8% | 46.0%
5 ST-ROI (Dynamic Weights) 56.7% | 35.3% | 26.2%
6 ST-ROI (Fixed Weights) 60.2% | 39.1% | 28.1%
7 | ST-ROI (Fixed Weights)f 57.0% | 37.0% | 32.3%
8 Ensemble (#3+#4) 753% | 52.2% | 62.4%
9 Ensemble (#3+#5) 753% | 44.5% | 60.2%
10 | Ensemble (#3+#6) 76.7% | 48.8% | 60.7%
11 | 2s-AGCN* (Joint+Bone) [2] 71.3% | 42.4% | 53.2%
12 | MS-G3D* (Joint+Bone) [4] 71.1% | 37.0% | 54.6%
13 | CTR-GCN* (Joint+Bone) [62] | 79.9% | 64.7% | 62.1%
14 | Ensemble (#11+#6) 76.5% | 47.7% | 57.1%
15 | Ensemble (#12+#7) 74.7% | 41.7% | 57.7%
16 | Ensemble (#12+#6) 775% | 47.8% | 57.4%
17 | Ensemble (#13+#6) 82.1% | 58.5% | 62.9%

Compared with existing methods, as shown in Table 13,
our MMNet achieved the second best performance under
the CS evaluation protocol by using the vision backbone
EfficientNet-V2-L [87]. Improvements of per-class accuracy
are illustrated in Figure 9. For the other two evaluation pro-
tocols, our method also achieved competitive performance.

4.8 Analysis of Joint Weights

The GCN submodel can learn the importance of skeleton
joints at a specific time, meaning that the time-specific effect
on a skeleton joint fluctuates during the progression of an
action. Fig. 8 shows changes in this time-specific effect of dif-
ferent skeleton joints, reflecting the importance of a node on
the graph. As depicted, a specific action is associated with
active and inactive positions on the temporal dimension.
Inactive positions indicate that the subject has performed
the action and is in an almost static state. For the action
in Fig. 8, some skeleton joints (e.g., both hands) are more
active (i.e., have higher neuron activation values) than the
foot areas. Directly taking the mean value of all temporal
positions to compute Equation 5 will smooth out the time-
specific effect, as inactive positions will affect the active
positions used to calculate the joint-specific weight.

TABLE 13
Comparison of Toyota Smarthome with three evaluation protocols. S
and R denote skeleton and RGB modalities, respectively. Results are
mean per-class accuracy. The second best is underlined.

[ Methods [s][rR] cs [ cwvi [ cvy ]
5C-AGCN+SSTA-PRS [88] V|- 62.1% | 22.8% | 54.0%
13D [84] - v | 534% | 34.9% 45.1%
AssembleNet++ [89] - Vv | 63.6% - -
TSMF (Pose_V1.2) [22] vV | V| 538% | 169% | 28.9%
VPN (Pose_V1.1) [53] Vv | v | 60.8% | 43.8% 53.1%
VPN (Pose_V1.2) [53] v || 652% - 54.1%
VPN++ + Poses (Pose_V1.2) [53] v |V | 71.0% - 58.1%
Our MMNet (Pose_V1.2, ResNet18, L = 5) V| V| 661% | 274% 33.4%
Our MMNet (Pose_V1.2, EfficientNet-V2-L, L =5) | v/ | v/ | 70.1% 37.4% | 46.6%
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Fig. 9. Improvement of our MMNet over baseline model CTR-GCN on
the Toyota Smarthome dataset (21 of 31 actions are improved).

The implementation of the joint weight in Equation 5
can be empirically determined based on the top 15 valued
positions. Intuitively, computing a fused representation at a
fine-grained temporal level (i.e., a time-specific structural-
appearance connection) could be an effective strategy; how-
ever, we found that that the performance was poor because
temporal positions for the RGB and skeleton modalities
were not ideally associated. Thus, we implemented the top
15 valued positions of a skeleton joint for a specific body
part. Table 14 shows a comparison of different numbers of
top valued temporal positions, where we tested selections
from the top 5 to top 25 skeleton joint positions with an
interval of 5. Results for the top 15 positions tended to be
the most empirically compelling.

4.9 Analysis of Skeleton-Focused Representation

For the RGB video modality, our MMNet could focus on
varied lengths of RGB video frames, which could influence
performance. On one hand, taking a larger number of
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TABLE 14
Comparison of results when selecting different top-¢ valued temporal positions in GCN features to retrieve joint weights.

T NTU 60 NTU 120 PKU-MMD N-UCLA Multiview Toyota Smarthome

-t

P [ X-sub [ X-View | X-Sub [ X-Set | X-sub [ x-View | v, [ V2, [ Vi, | €S [owvi | cva

t=5 | 935% | 972% | 89.6% | 91.8% | 954% | 97.6% | 93.1% | 90.0% | 82.1% | 762% | 37.5% | 55.2%

t=10 | 93.6% | 97.9% | 90.0% | 92.2% | 958% | 98.0% | 93.5% | 90.3% | 824% | 76.2% | 384% | 57.0%

t=15 | 93.9% | 98.0% | 90.3% | 921% | 963% | 98.0% | 93.3% | 91.1% | 83.7% | 77.5% | 47.8% | 57.4%

t=20 | 93.6% | 97.7% | 90.5% | 91.8% | 96.3% | 97.8% | 933% | 90.3% | 83.0% | 76.3% | 454% | 55.5%

t=25 | 938% | 977% | 90.3% | 91.8% | 959% | 97.1% | 93.2% | 90.1% | 83.2% | 76.2% | 45.6% | 55.3%
TABLE 15

Comparison of results when selecting different numbers of RGB frames to construct the ST-ROI.

NTU 60 NTU 120

PKU-MMD

N-UCLA Multiview Toyota Smarthome

~

X-Sub | X-View | X-Sub | X-Set | X-Sub

X-View

Vi, [ v, [ Vi, [ Cs [owi [ cw

92.6%
92.9%
93.9%
93.5%
94.1%

97.3%
97.6%
98.0%
97.7%
97.5%

89.2%
89.7%
90.3%
90.4%
90.4%

90.7%
91.5%
92.1%
92.0%
91.8%

95.8%
96.1%
96.3%
96.1%
96.2%

SIS NSNS
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© N o w =

97.2%
97.9%
98.0%
98.2%
98.0%

92.1%
93.1%
93.3%
93.7%
92.9%

89.4%
90.1%
91.1%
89.9%
90.1%

82.1%
82.6%
83.7%
82.6%
82.6%

75.4%
76.1%
77.5%
76.8%
76.1%

37.7%
38.4%
47.8%
40.0%
39.5%

56.3%
56.9%
57.4%
54.0%
59.8%

frames could lead to redundant features for the RGB modal-
ity and cause the model to struggle to focus on important
frames and variance in this modality. On the other hand,
using fewer frames could prevent the model from capturing
useful features. Fig. 10 displays different potential choices
of RGB frames.

Focused ST-ROI

Joint Weights ST-ROI

Fig. 10. Visualization of skeleton-focused representations with different
sampling lengths of the RGB modality (ST-ROI is normalized).

We conducted experiments to investigate options for the
number of RGB video frames used to construct the ST-ROL
Table 15 shows experimental results with different values
of L. Findings reveal that, when using 5 RGB video frames,
the proposed MMNet generally achieved competitive recog-
nition accuracy. Occasionally, the model performed better
with different options for L (e.g., 98.2% for PKU X-View
and 93.7% for N-UCLA V13,2), but the enhancement was not
as noteworthy compared with when L = 5.

5 DISCUSSION

As discussed in Section 2.1.2, indoor actions vary consid-
erably from outdoor actions regarding feature differences
in their background scenes. To further explore whether
our model design can be validated on outdoor actions,
we conduct experiments on the Kinetics 400 dataset [40],

which is based on OpenPose 2D skeleton samples available
in [1] and downloadable videos of Kinetics 400 [40] at the
time experiments were performed. Table 16 shows that the
results on Kinetics 400 coincide with those of the other four
datasets considered in this research, further confirming that
the design of our MMNet is reasonable: this approach can
effectively alleviate the lack of appearance features in the
skeleton modality.

The state-of-the-art accuracy of the skeleton-based
method on Kinetics 400 lags far behind that of RGB video-
based methods, such that the former is achieved by MS-
G3D [4] at an accuracy of 38.5% and the latter is achieved
by a series of SlowFast models [46] (the highest accuracy
is 79.8%). Video-based methods also cannot perform as
competitively as skeleton-based methods on indoor actions
in NTU RGB+D. It is worth noting that background scenes
contribute to the recognition of outdoor actions in Kinetics
400. For example, [45] and [46] each indicated that the
background scenes of some actions (e.g., “playing tennis”,
“playing badminton”, “playing cricket”) in Kinetics 400 play
an important role in recognition. Our MMNet is designed
for indoor actions in RGB-D videos, where background
scene information is not used. This circumstance leads to
a limitation similar to skeleton-based methods when recog-
nizing outdoor actions.

6 CONCLUSION

We have proposed a multimodal DL architecture called
MMNet for HAR in RGB-D videos using a model-based
multimodal data fusion mechanism. This method borrows
the attention feature from the skeleton modality and con-
tributes to the RGB modality’s performance, thus enhanc-
ing ultimate ensemble performance. The proposed MMNet
achieved very competitive performance on five represen-
tative large datasets (NTU RGB+D 60/120, PKU-MMD,
Northwestern-UCLA Multiview, and Toyota Smarthome)
compared with skeleton-based, RGB video-based, and mul-
timodal methods. The results of the RGB modality when
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TABLE 16
Ablation study for the Kinetics 400 dataset.

’ # ‘ Methods ‘ Top-1 ‘
1 MS-G3D (Skeleton Joint) [4] | 36.4%
2 | MS-G3D (Skeleton Bone) [4] | 36.0%
3 | Ensemble (#1+#2) 38.5%
4 | ST-ROI (No Joint Weights) 21.7%
5 | ST-ROI (Dynamic Weights) 22.8%
6 | ST-ROI (Fixed Weights) 23.3%
7 | Ensemble (#1+#6) 40.7%
8 | Ensemble (#3+#4) 42.7%
9 | Ensemble (#3+#5) 43.0%
10 | Ensemble (#3+#6) 43.5%

using a fixed attention mechanism were better than that
using dynamic weights and performed better in terms of
ensemble results when aggregated with findings from the
skeleton modality.

In the future, we intend to further investigate other
aspects (e.g., depth and optical flow streams) that can affect
the performance of multimodal HAR by designing archi-
tectures with more prior knowledge and by making our
models more explainable and improvable. Additionally, for
outdoor actions, we will work on incorporating background
scene information to expand our method to more challeng-
ing real-world datasets such as Kinetics [40].
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