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a b s t r a c t 

Human action evaluation (HAE) involves judgments about the abnormality and quality of human actions. 

If performed effectively, HAE based on skeleton data can be used to monitor the outcomes of behavioral 

therapies for Alzheimer’s disease (AD). In this paper, we propose a two-task graph convolutional network 

(2T-GCN) to represent skeleton data for HAE tasks involving abnormality detection and quality evaluation. 

The network is first evaluated using the UI-PRMD dataset and demonstrates accurate abnormality detec- 

tion. Regarding quality evaluation, in addition to laboratory-collected UI-PRMD data, we test the network 

on a set of real exercise data collected from patients with AD. A numerical score indicating the degree 

to which actions deviate from normal is taken to reflect the severity of AD; thus, we apply 2T-GCN to 

determine such scores. Experimental results show that numerical scores for certain exercises performed 

by patients with AD are consistent with their AD severity level as identified by clinical staff. This corrob- 

oration highlights the potential of our approach for monitoring AD and other neurodegenerative diseases. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Human action evaluation (HAE) involves the determination of 

omputational models to automatically detect abnormalities and 

ssess the quality of human motions performed for specific pur- 

oses. HAE differs from human action recognition (HAR), which fo- 

uses on classifying different actions [1] ; however, the two meth- 

ds share similar sensor technologies. HAE has many useful ap- 

lications in areas such as physical rehabilitation, assisted living, 

kills training, and sports activity scoring [2] . Scholars have re- 

ently attempted to investigate skeleton-based HAE [3,4] . Current 

AE approaches that use deep learning (DL) methods model ac- 

ion assessment as a regression problem based on the supervision 

f either arbitrary function scores [5] or subjective human labels 

6] . However, it remains challenging for models to simultaneously 

andle HAE tasks of abnormality detection and quality assessment. 

o advance existing HAE methods, we propose a two-task graph 

onvolutional network (2T-GCN) approach to tackle relevant tasks. 

iven a set of temporally related skeleton frames, we construct a 

keleton graph to represent skeleton data. The abnormality detec- 
∗ Corresponding author. 

E-mail addresses: csyliu@comp.polyu.edu.hk (Y. Liu), wxying@mail.sysu.edu.cn 

X. Wang). 

r

f

d

e

ttps://doi.org/10.1016/j.patcog.2021.108095 

031-3203/© 2021 Elsevier Ltd. All rights reserved. 
ion task is modeled by training the proposed 2T-GCN as a binary 

lassifier; for quality evaluation purposes, a numerical action eval- 

ation score is then retrieved from the trained 2T-GCN model. The 

roposed method is tested on a public dataset called URI-PRMD 

7] . Our approach achieves encouraging results and demonstrates 

he better HAE ability of Kinect v2. 

Alzheimer’s disease (AD) is especially prevalent compared with 

ther non-communicable diseases that collectively account for 

early 70% of deaths worldwide [8,9] . To improve the health of the 

lderly, it has become increasingly important to develop effective 

D treatments [10,11] . Although various biomarkers have been de- 

eloped for early AD diagnosis, accurate diagnosis partially relies 

n clinical criteria that often require at least 6 months for symp- 

oms to appear [12] . Even if symptoms manifest to the point that 

 diagnosis of AD can be confirmed, the disease is currently incur- 

ble. Per the Global Deterioration Scale [13] , AD symptoms such as 

ncreased forgetfulness, decreased work performance, and higher 

requency of getting lost become noticeable to family members 

uring the mild cognitive impairment (MCI) stage. Because MCI 

epresents a relatively long dysfunction process that can persist for 

oughly 7 years [14] , clinicians have striven to develop criteria to 

acilitate early AD diagnosis and thus decelerate or even prevent 

isease progression [10–13] . For example, a growing body of lit- 

rature suggests that systematic exercise training can improve pa- 
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ients cardiovascular functioning; increase flexibility, balance, and 

trength; and prevent cognitive dysfunction [15–17] . 

However, clinical diagnosis and behavioral therapies for AD usu- 

lly require a number of sessions, which can be unaffordable for 

atients families. Yet HAE tasks, if tackled effectively, can support 

he diagnosis and treatment of AD [11,18] . Given this observation, 

e note that most AD symptoms manifest in cognitive domains 

uch as praxis, executive functions, language, complex visual pro- 

essing, and gnosis. Praxis impairment can include impaired cogni- 

ive functioning involving gesture-based imitation, production, or 

ecognition [19] . Therefore, in this study, we decided to conduct 

xperiments to investigate the praxis domain of cognitive changes. 

pecifically, we employed a Kinect v2 sensor to monitor morning 

xercises among normal and AD subjects in an elderly home. To 

etermine their praxis health conditions, we gathered and ana- 

yzed a dataset using the proposed 2T-GCN to generate numeri- 

al evaluation scores for the collected exercises. Results showed 

hat the scores of many exercises corresponded with AD sever- 

ty scores assigned by clinical staff, suggesting that our proposed 

ethod could benefit AD diagnosis and related behavioral inter- 

entions. 

. Related work 

In this section, we review state-of-the-art research on skeleton- 

ased HAE from the perspectives of skeleton retrieval, skeleton 

epresentation methods, and datasets and their evaluation criteria. 

.1. Skeleton retrieval 

A summary of existing HAE methods in [2] indicated motion 

etection as the first step in data retrieval. Thus, we introduce 

keleton detection methods in this section. Vision devices that sup- 

ort 2D/3D skeleton retrieval include three types: motion capture 

Mocap) systems, depth cameras, and RGB cameras. Mocap system 

ompanies provide these systems in domains such as biomechan- 

cs, sports, engineering, and entertainment. Mocap systems can 

rovide highly accurate skeleton data but carry high costs and low 

exibility for commercialization purposes; off-the-shelf commer- 

ial depth cameras such as Kinect and Intel RealSense can retrieve 

keleton data more affordably than Mocap systems. RGB cameras 

an retrieve 2D skeleton [20] or 3D skeleton [21,22] data but come 

ith higher computational costs. Kinect sensors, which can also ef- 

ciently retrieve skeleton data, are often used in relevant research. 

 list of public benchmark datasets identified in a survey of hu- 

an body skeleton representation [23] revealed that 29 out of 41 

atasets were collected with Kinect; Mocap systems and RGB cam- 

ras were the second and least popular approaches, respectively. 

he accuracy of Kinect v1 when measuring movements in peo- 

le with Parkinson’s disease was evaluated in [24] . Results showed 

hat the device could accurately measure the timing and gross spa- 

ial characteristics of clinically relevant movements. 

Given the popularity and affordability of Kinect sensors, we 

sed Kinect v2 to collect a dataset in this study. To further vali- 

ate the sensor’s suitability, we performed extensive experiments 

n UI-PRMD [7] using Kinect v2 and Vicon Mocap. 

.2. Skeleton representation 

Effective skeleton-based HAE methods rely on proper represen- 

ations of skeleton data. Available skeleton representations can be 

lassified into two main approaches: handcrafted feature represen- 

ations and deep feature representations [2] . Handcrafted feature 

epresentations rely on constructing effective geometric features 

rom skeleton data. Based on geometric features, traditional algo- 

ithms such as the hidden Markov model (HMM) [6] , support vec- 
2 
or machine [25] , and k-nearest neighbor [26] approaches are com- 

only used for HAE. The training process in [6] was supervised 

y the abnormality degree (on a scale of 1 to 5) as evaluated by 

 professional physiatrist. Various HMM models were compared in 

27] , and DL models have outperformed them when applied to var- 

ous datasets [28] . Common DL models such as convolutional neu- 

al networks and long short-term memory (LSTM) were adopted in 

29] for gesture correctness estimation. Additionally, a DL frame- 

ork using LSTM was proposed to encode skeleton data from the 

I-PRMD dataset, which was supervised by a quality score func- 

ion [5] . Advanced LSTM representation models, such as ST-LSTM 

30,31] , were initially proposed for skeleton-based HAR tasks. More 

ecently, GCN models [32–34] have demonstrated encouraging per- 

ormance in HAR tasks; however, these models [32–34] have sel- 

om been applied to HAE. In this paper, we adopt a basic GCN 

odel in [32] to represent skeleton data and adapt the model for 

wo HAE tasks (i.e., inferring the abnormality and quality of an ac- 

ion). As far as we know, our work represents a pioneering attempt 

o use a GCN model with skeleton-based HAE. 

In terms of HAE, existing methods are either supervised by hu- 

an labels [6] or an arbitrary score function [5] , which might not 

atisfy the requirements for AD diagnosis. On one hand, training 

 regression model based on a subjective clinical label alone can 

ake it difficult to evaluate symptom severity in AD patients. This 

pproach is therefore not adopted in our study. On the other hand, 

upervising the training process with a score function leads to re- 

undancy: the results could already be obtained through the evalu- 

tion function. Our method differs from available approaches. First, 

e use a graph representation to train a GCN model supervised 

ith binary labels (i.e., normal or abnormal). We then retrieve 

he evaluation score from the probability distribution before the 

odel’s SoftMax classifier, as the evaluation score contains more 

nformation than the classification result [35] . 

.3. Datasets and evaluation 

Few studies have reviewed HAE benchmarks. Several 

ealthcare-related HAE datasets were outlined in [36] , but 

ost surveyed datasets focused on action recognition rather than 

valuation. To our best knowledge, no research has yet investi- 

ated the standard evaluation method of HAE algorithms. Given 

he popularity of Kinect sensors for human action analysis, we 

ave examined the evaluation methods of representative bench- 

arks that used Kinect to retrieve skeleton data (see Table 1 ). 

n [37] , Kinect v1 was adopted to monitor several psychomotor 

xercises (e.g., “touch the right eye with the right hand”, “touch 

he left eye with the right hand”, and “raise the right hand”). 

he system presented in [37] could detect 14 psychomotor exer- 

ises but did not involve action assessment. The SPHERE dataset 

27] included three sub-datasets Staircase2014, Walking2015, and 

itStand2015 but simply provided data on the center of the body 

nstead of all skeleton joints. The UI-PRMD dataset [7] represents 

 fitness dataset collected for HAE algorithm evaluation. Because 

his dataset [7] did not provide a standard evaluation method, 

he methods proposed in [5] and [38] could not be properly 

ompared. Furthermore, different from the 10 incorrect exercises 

n UI-PRMD that are simulated by subjects who perform the 

ther correct motion sequences, exercises in the AHA-3D dataset 

39] are performed by older and younger people. However, as of 

his writing, the AHA-3D dataset is not publicly accessible. The 

valuation method in [39] presented a per-frame view rather than 

ssessing the entire action sequence. EJMQA [6] includes four 

imple actions and is similar to SPHERE [27] . 

Unlike existing datasets that were performed by young subjects, 

e collected an elderly home exercise (EHE) dataset from subjects 

ith AD. 
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Table 1 

Benchmark human activity evaluation datasets. 

Dataset Year Sensor Disease NS NA 

Ortega et al. [37] 2014 Kinect v1 CD 15 14 

SPHERE [27] 2016 Kinect v2 Stroke, PD 12/10/10 3 

UI-PRMD [7] 2018 Kinect v2, Vicon Rehabilitation 20 10 

AHA-3D [39] 2018 Kinect v2 Fitness 23 4 

EJMQA [6] 2020 Kinect v2 NMD 32 4 

Our EHE 2020 Kinect v2 AD 25 6 

Note: NS, number of subjects; NA, number of actions; CD, cognitive deterioration; PD, 

Parkinson’s disease; NMD, neuromuscular disorder; AD, Alzheimer’s disease. 

Fig. 1. Examples of morning exercises in the elderly home. 
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Table 2 

Demographic information and number of repetitions per exercise in EHE dataset. 

Subject ID 

Demographic Information No. of Repetitions 

A G W H AD E1 E2 E3 E4 E5 E6 

1 76 M 70 168 0 7 5 4 9 2 3 

2 72 M 66 180 7 7 5 6 6 3 3 

3 60 M 54 172 8 6 5 6 8 3 3 

4 68 M 60 160 0 6 5 5 6 2 2 

5 62 M 70 165 5 0 5 8 6 2 2 

6 72 F 51 157 10 7 5 8 7 1 1 

7 68 F 54 158 0 7 7 6 1 4 3 

8 92 M 55 165 0 8 6 6 3 3 3 

9 86 F 55 163 0 11 5 6 4 2 2 

10 54 M 60 162 10 8 5 6 7 2 3 

11 67 M 85 185 5 9 6 10 9 3 3 

12 83 M 65 170 6 9 5 12 9 3 2 

13 81 F 48 151 4 9 6 13 0 3 3 

14 64 M 65 172 8 7 6 6 5 3 2 

15 67 M 70 170 6 8 6 6 6 3 2 

16 57 F 69 156 0 8 6 7 6 4 4 

17 70 M 94 182 0 8 6 14 3 4 4 

18 56 F 64 158 0 7 6 12 4 4 3 

19 84 M 61 175 0 8 5 15 2 4 4 

20 55 F 55 160 0 8 6 13 13 4 4 

21 77 F 47 161 0 8 7 14 15 3 3 

22 60 F 58 163 0 11 7 13 15 3 3 

23 55 F 58 162 0 9 7 0 12 3 3 

24 66 F 65 163 0 11 6 0 15 3 3 

25 58 F 66 161 0 11 6 0 15 3 3 

Note: A, age; G, gender; W, weight in kilograms; H, height in centimeters (weight 

and height are rounded to the nearest integer) ; AD, severity of Alzheimer’s disease on 

a scale of 1 to 10; M, male; F, female; E1 to E6, Exercise 1 to Exercise 6. 
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. Elderly home exercise dataset 

In this study, we provide valuable insight for the HAE field by 

ollecting an EHE dataset from an elderly home based on real el- 

erly patients with AD. Collecting routine exercise data is time- 

onsuming and accompanied by intensive labeling costs. Moreover, 

s HAE has rarely been applied to real-world disease monitoring, 

e chose to gather sample data to validate effective HAE meth- 

ds that could then be expanded on a larger validation scale. Our 

ataset consists of several actions from morning exercises that pa- 

ients complete daily in the elderly home. In this section, we in- 

roduce our data collection method along with the structure of our 

HE dataset. In the selected elderly home, residents complete daily 

orning exercises led by clinical staff. The staff member demon- 

trates physical exercises to a group of residents who follow the 

odel to imitate the exercises. We did not provide novel exercises 

or the elderly residents, as doing so would have disrupted their 

aily schedule and presented challenges for clinical staff and resi- 

ents. To maintain a natural setting in the elderly home, all exer- 

ises in this study were identical to those that residents normally 

omplete each day. Similar to sensor usage in prior research, six 

xercises (see Fig. 1 ) were collected for our EHE dataset via Kinect 

2. 

The demographic information for 25 subjects who participated 

n data collection is listed in Table 2 . Subjects average age was 68.4

ears with a standard deviation of 10.82 years. Our dataset there- 

ore differed from existing datasets performed by young subjects. 

he relatively younger residents in our dataset, such as Subjects 

6, 18, and 20, were caregivers in the elderly home. Ten subjects 

ad been diagnosed with AD of varying severity as indicated in 

he “AD” column of Table 2 . Clinical staff assessed subjects sever- 
3 
ty level based on a scale of 0 to 10, where 0 represents no AD

nd 10 represents the last stage of AD. Table 2 also indicates the 

umber of exercise repetitions retrieved from raw Kinect v2 data. 

ome exercises had 0 repetitions due to failed skeleton detection. 

. Our 2T-GCN method 

In this section, we introduce the skeleton data notation and 

onvolutional operations proposed in our 2T-GCN method for the 

AE tasks of abnormality detection and exercise quality evaluation. 

.1. Data structure and notation 

We denote N repetitions of an exercise performed by all sub- 

ects as S = 

{
S (i ) | i = 1 , ..., N 

}
, where S (i ) is a sequence of skele- 

on frames that characterize the exercise. For a particular exercise, 

e recorded a sequence of skeleton frames corresponding to that 

xercise. As Fig. 2 depicts, each skeleton frame consisted of a set 

f skeleton joints labeled as HEAD, NECK, FOOTLEFT, and so on. A 

keleton frame with J skeleton joints observed at time t is denoted 

s S (i ) 
t = 

(
S (i ) 

t1 
, ..., S (i ) 

t j 
, ..., S (i ) 

tJ 

)
, where S (i ) 

t j 
contains eight attributes 

orresponding to a joint’s position and orientation features. The 

osition of joint S (i ) 
t j 

has four attribute features, including 3-D 
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Fig. 2. Skeleton joints of Kinect v2 sensor. 

Fig. 3. (a). Illustration of the constructed skeleton graph. (b). Illustration of the con- 

volutional sampling strategy for green nodes. Different colors denote different sub- 

sets. × represents the skeleton’s center of gravity. 
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artesian coordinates (x, y, z) and its height h from the floor. Com- 

aratively, the orientation of joint S (i ) 
t j 

is represented by a quater- 

ion that has a set of values ( X, Y, Z, W ) , where ( X, Y, Z ) can be 

ransformed into angular orientation values (yaw, rol l , pitch ) and 

 is used to calculate the ground plain of the environment. Hence, 

e can use S (i ) 
t j 

= ( x, y, z, h, X, Y, Z, W ) to denote all attributes of a 

keleton joint. We considered multiple attribute combinations in 

ur experiments. 

.2. Graph convolutional network 

.2.1. Graph construction 

Each skeleton frame includes a number of skeleton joints. Raw 

keleton joint data were streamed as an ordered list of vectors. 

ach vector included the position and orientation features of the 

orresponding joint. We propose adopting a GCN model to repre- 

ent structured information among these joints along spatial and 

emporal dimensions. Figure 3 (a) illustrates the constructed skele- 

on graph. On the spatial dimension, skeleton body joints are rep- 
4 
esented as vertices; their natural connections, indicating bones, 

re spatially connected as edges (the orange lines in Fig. 3 [a]). On 

he temporal dimension, the corresponding joints between two ad- 

acent frames are temporally connected by edges (the black lines 

n Fig. 3 [a]). To symbolize the skeleton graph at time t , we denote 

t as ϑ t = { υt , ε t } , where υt represents the skeleton joints and ε t 
epresents the skeleton bones, respectively. In this skeleton graph, 

e denote all joints of a complete exercise repetition as a node set 

t = 

{ 

υt j | υt j = S (i ) 
t j 

, j = 1 , . . . , J 

} 

. The attributes of a vertex on the 

raph are the corresponding position and orientation features of a 

keleton joint. 

.2.2. Graph convolutional operation 

Similar to 2D convolution, the convolutional operation of GCN 

equires a sampling area. As in [32] , the sampling area of a node 

t j is defined as a spatial and temporal neighbor set. Figure 3 (b) 

llustrates this strategy, where the spatial sampling area B S (υt j ) 

s enclosed by the red curve. Empirically, as Fig. 3 (b) shows, the 

ampling strategy uses 3 spatial subsets: the vertex itself; the cen- 

ripetal subset that contains neighboring vertices closer to the cen- 

er of gravity; and the centrifugal subset that contains neighboring 

ertices farther from the center of gravity, respectively illustrated 

y green, blue, and yellow circles. Suppose the whole sampling 

rea B S (υt j ) has a fixed number of L subsets; every neighbor set 

ould thus be numerically labeled with a mapping h t j : B S 
(
υt j 

)
→ 

 

0 , . . . , L − 1 } . Then the graph convolution could be computed as 

f out (υt j ) = 

∑ 

υtk ∈ B S υt j 

1 

Z t j ( υtk ) 
f in ( υtk ) w (h t j (υtk )) (1) 

here f in : v tk → R c is the mapping that obtains the attribute fea-

ures of joint node υtk , Z t j (υtk ) = |{ υtm 

| h t j (υtm 

) = h t j (υtk ) }| is a

ormalization term equal to the cardinality of the corresponding 

ubset. w (h t j (υtk )) is a weight function w (υt j , υtk ) : B S (υt j ) → R c 

mplemented by indexing a tensor with a size of (c, L ) . 

Temporally, the neighborhood concept is extended to sequen- 

ially connected joints as B T 
(
υt j 

)
= 

{
υq j || q − t| ≤ �/ 2 

}
, where � is 

he temporal kernel size that controls the temporal range of the 

eighbor set. The dotted red curve Fig. 3 (b) indicates the temporal 

ampling area expanded from the spatial sampling area. 

.2.3. GCN block 

The implementation of graph-based convolution is not as 

traightforward as 2D convolution and relies instead on a defined 

ampling strategy. The network input can be represented as a 

 × T × J tensor, where C is the number of attributes on a joint ver- 

ex. The determined spatial sampling strategy can be represented 

y a J × J adjacency matrix A whose elements reflect whether a 

ertex υt j is included in the neighbor set. With L spatial sampling 

trategies 
∑ L 

k =1 A l , a spatial GCN (Convs) layer is implemented 

y multiplying the resulting tensor of a L × 1 classical 2D convo- 

ution with the normalized adjacency matrix �− 1 
2 A�− 1 

2 . Hence, 

q. (1) can be transformed into 

f out (S (i ) ) = 

∑ L 

l=1 
�

− 1 
2 

l 
A l �

− 1 
2 

l 
f in W l � M l (2) 

here � j j 

l 
= 

∑ J 

k 
(A 

jk 

l 
) + α is a diagonal matrix with α set to 0.001 

o prevent empty rows. W l denotes the weighting function of 

q. (1) , which is a weight tensor of the 1 × 1 convolutional opera- 

ion. M l represents an attention map indicating the importance of 

raph nodes, which has the same size of A l . � is the element-wise 

roduct between two matrices. 

Given the Convs layer implemented above, a temporal GCN 

Convt) layer can then be implemented via a 2D convolutional op- 

ration with its kernel size set to � × 1 . As Fig. 4 shows, a basic

CN block is stacked with a Convs layer, a Convt layer, and an 
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Fig. 4. Illustration of a GCN block. Convs represents the spatial GCN, and Convt 

represents the temporal GCN, both of which are followed by a BN layer and a ReLU 

layer. Moreover, a residual connection is added to the block. 
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dditional dropout layer with the drop rate set to 0.5 to prevent 

verfitting. Convs and Convt are each followed by a batch normal- 

zation (BN) layer and a ReLU layer. To stabilize training, similar to 

an et al. [32] , a residual connection is added for the GCN block. 

.3. Network architecture 

The proposed 2T-GCN model is constructed from a stack of ba- 

ic blocks. There are 9 GCN blocks in total as shown in the middle

art of Fig. 5 . The first three blocks, the middle three blocks, and

he last three blocks have 64, 128, and 256 output channels, re- 

pectively. The temporal kernel size of these GCN blocks is set to 

. The strides of the 4th and 7th GCN blocks are both set to 2. To

ormalize the input data, a BN layer is added at the beginning. As 

 common practice in DL, we add a global average pooling layer 

t the end of the GCN blocks to transform the data into a vec- 

or with 256 dimensions. As the data are binarily labeled as either 

ormal or abnormal, we use a 2D convolutional layer to transform 

he 256-dimensional feature vector into a 2-dimensional vector. Fi- 

ally, we feed the 2-dimensional vector to a SoftMax classifier to 

nfer the abnormality of a given exercise. 

We adopt the probability results of the SoftMax layer to infer 

he evaluation score of an exercise repetition. More specifically, we 

etrieve the first dimension of the probability distribution from the 

oftMax layer of the model, which can be calculated as 

f score (a, b) = 

e a 

(e a + e b ) 
(3) 

here a and b respectively represent the first and second neuron 

utput values of the fully connected layer that are used to calculate 

he probability distribution of the SoftMax layer. 

This numerical score can indicate the exercise quality without 

he supervision of subjective human evaluation scores [6] or arbi- 

rary scores calculated by a function as in [5] . In our experiments, 

e investigated whether this score could be consistent with the 

linical evaluation. 

.4. Optimization 

To learn the weights � of the 2T-GCN model G , we define the 

bjective as a classification problem supervised by binary labels y . 

he binary labels for our EHE dataset are transformed from clinical 

valuations with no AD set into 1, indicating no abnormality. Oth- 

rwise, the label is set to 0 to indicate abnormal action. By using 

he cross-entropy loss for abnormality detection, the objective can 

e formulated as 

rg max 
�

1 

N 

∑ N 

i =1 
−

∑ 

y (i ) log(σ (G (θ, S (i ) ))) (4) 

here G (θ, S (i ) ) is the defined graph convolutional operation as 

hown in the middle of Fig. 5 . σ represents the SoftMax function 
5 
hat transfers the probability distribution results to the abnormal- 

ty result. 

. Experiments 

In this section, we introduce the experiments in which we ap- 

lied our 2T-GCN method to two datasets UI-PRMD [7] and our 

HE in terms of abnormality detection and exercise quality eval- 

ation. We validated two perspectives on UI-PRMD. First, because 

e employed Kinect v2 to collect our EHE dataset, we referred to 

he UI-PRMD dataset [7] to validate the suitability of using Kinect 

2 by comparing the device’s output with that of the Vicon opti- 

al tracking system. Second, we validated our proposed method by 

omparing its representation ability with that proposed in [5] in 

erms of evaluation metrics. Regarding the EHE dataset, we vali- 

ated the potential of our method for monitoring AD progression. 

.1. Datasets 

.1.1. UI-PRMD 

The UI-PRMD dataset [7] consists of skeleton data gathered 

rom 10 healthy subjects with every subject performing 10 repe- 

itions of 10 rehabilitation exercises such as “deep squat”, “hurdle 

tep”, and “sit to stand” in a correct and incorrect manner. Two 

ensors (i.e., Kinect v2 and the Vicon optical tracking system) were 

sed to collect the dataset, with both sensors providing position 

nd orientation features of skeleton data. We referred to the con- 

istent version of the dataset processed by [5] , in which incon- 

istent samples due to measurement error or subjects using the 

rong limbs to perform an exercise were removed. 

.1.2. Our EHE dataset 

As described in Table 2 , our EHE dataset contained 869 ac- 

ion repetitions performed by 25 older people. One objective of 

his dataset involved investigating which skeleton features primar- 

ly contributed to abnormality detection. We used the eight fea- 

ures described in Section 4 in varying combinations to explore 

hich features would be best for evaluating certain exercises. An- 

ther goal was to examine whether the action quality evaluation of 

ur 2T-GCN method reflected the severity level of AD as evaluated 

y clinical staff. To do so, we adopted a cross-validation criterion 

o evaluate the HAE ability of our proposed method. 

.2. Implementation details 

To train the proposed 2T-GCN model, we adopted the same ex- 

erimental setting for the UI-PRMD and EHE datasets. Specifically, 

e used stochastic gradient descent to optimize our 2T-GCN model 

y setting the initial learning rate to 0.1. At epochs of 10, 50, and 

00, we decayed the learning rate by multiplying it by 0.1. The 

raining process was terminated once the model either achieved 

00% accuracy or reached epoch 200. The batch was set to 16. All 

xperiments were performed on a workstation with 2 GTX 1080 Ti 

PUs. 

.3. Evaluation metrics 

To test the representation ability of the GCN model, we re- 

erred to the concept of separation degree (SD) defined in [5] . 

or a pair of positive numbers x and y , the SD can be defined

s SD (x, y ) = 

x −y 
x + y ∈ [ −1 , 1] . Then the SD between two positive se-

uences x = (x 1 , x 2 , . . . , x m 

) and y = (y 1 , y 2 , . . . , y n ) can be cal-

ulated as 

D ( x , y ) = 

1 

mn 

m ∑ 

i =1 

n ∑ 

j=1 

S D (x i , y j ) (5) 
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Fig. 5. Illustration of the 2T-GCN model structured with 9 GCN blocks (B1’B9). The three numbers for each block represent the number of input channels, the number 

of output channels, and the stride, respectively. GAP represents the global average pooling layer. The model output can then be classified by a SoftMax classifier to infer 

abnormality; the results will also deliver a numerical evaluation score by utilizing the probability output of the SoftMax layer. 

Table 3 

Separation degree of exercises with different features and sensors in UI-PRMD. 

Method 

Exercise 

ID 

Separation Degree (Std. Deviation) 

Kinect v2 Vicon 

3D Position Angular 3D Position Angular 

Our 

Method 

E1 0.908 (0.127) 0.977 (0.039) 0.468 (0.292) 0.986 (0.035) 

E2 0.942 (0.088) 0.992 (0.029) 0.875 (0.214) 0.713 (0.282) 

E3 0.821 (0.165) 0.930 (0.167) 0.591 (0.300) 0.945 (0.077) 

E4 0.712 (0.191) 0.909 (0.086) 0.009 (0.010) 0.699 (0.190) 

E5 0.691 (0.192) 0.953 (0.117) 0.547 (0.257) 0.955 (0.074) 

E6 0.961 (0.081) 0.902 (0.111) 0.785 (0.147) 0.832 (0.174) 

E7 0.873 (0.179) 0.867 (0.190) 0.867 (0.163) 0.975 (0.072) 

E8 0.890 (0.148) 0.899 (0.097) 0.657 (0.299) 0.750 (0.238) 

E9 0.785 (0.264) 0.937 (0.112) 0.301 (0.329) 0.913 (0.095) 

E10 0.267 (0.030) 0.953 (0.078) 0.422 (0.250) 0.968 (0.094) 

Our Method Average 0.793 (0.148) 0.933 (0.100) 0.545 (0.244) 0.878 (0.128) 

MV [5] Average - - - 0.344 (0.049) 

PCA [5] Average - - - 0.360 (0.060) 

AE [5] Average - - - 0.515 (0.106) 
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o validate the HAE ability of our method in monitoring AD pro- 

ression, we investigated whether the quality evaluation scores 

elivered by our model were consistent with clinical evalua- 

ion results. To do so, we considered the Euclidean distance 

ED) and correlation (CORREL) between HAE results with clini- 

al labels. For an n-dimensional space, the ED of two vectors 

 = (x 1 , x 2 , . . . , x n ) and y = (y 1 , y 2 , . . . , y n ) is calculated as

D ( x , y ) = 

√ ∑ n 
i =1 (x i − y i ) 

2 
. While the CORREL between x and y 

an be defined as CORREL ( x , y ) = 

∑ n 
i =1 (x −x̄ )(y −ȳ ) √ ∑ n 

i =1 (x i −x̄ ) 2 
∑ n 

i =1 (y i −ȳ ) 2 
, where x̄ 

nd ȳ are the average values of x and y , respectively. Smaller 

D ( x , y ) and larger CORREL ( x , y ) indicate that the evaluation result

s more consistent with the AD severity observation of a human 

xpert and vice versa. 

.4. Results and analysis 

.4.1. UI-PRMD 

Table 3 presents the SD results of our method and existing 

ethods. Various feature extractors such as maximum variance 

MV), principal component analysis (PCA), and autoencoder (AE) 

ere attempted with a combination of a log-likelihood Gaussian 

ixture model(GMM) in [5] . Our method achieved an average SD 

f 0.878 by using the same experimental setting as [5] , resulting 

n a substantial improvement over the best model (with an aver- 

ge SD of 0.515) based on a combination of log-likelihood GMM 

nd AE in [5] . Using the angular feature of the Kinect v2 sensor,

ur method achieved an even higher average SD of 0.933; there- 

ore, Kinect v2 appears more capable of HAE tasks, as it outper- 
6 
ormed the Vicon optical tracking system in terms of 3D positions 

nd angular features. 

To further validate the proposed method, as displayed in Fig. 6 , 

e visualized the exercise quality evaluation scores of “deep squat”

nd “hurdle step” in UI-PRMD by using the 3D position feature of 

inect v2. Correct and incorrect repetitions were clearly classified 

ased on the exercise quality evaluation score calculated with the 

robability output of the SoftMax layer of the proposed 2T-GCN 

odel with Eq. 4 . According to the results in [5] , the correct and

ncorrect pairs could not be clearly separated by their DL method 

s most of the incorrect repetitions get evaluation scores around 

.9 (given that 1 is the fully correct score), which needs to select a 

roper threshold to determine the correctness of an exercise rep- 

tition. With our method, the correctness of an exercise repetition 

s directly given by the result. Meanwhile, we could see that the 

cores of incorrect repetitions are below 0.5, whereas the correct 

epetitions have scores that are over 0.5. This indicates that our 

ethod achieves a clearer judgment on the correctness of an exer- 

ise repetition. 

.4.2. Elderly home exercise 

Because Kinect v2 provides position and orientation attributes 

or skeleton joints, we assessed its capabilities when dealing with 

ifferent attributes in various combinations. As Table 4 indicates, 

e conducted experiments on five feature combinations by com- 

aring the training accuracy for different exercises. Our results 

how that some features were well suited to evaluating specific 

xercises. For example, “xyz” was appropriate for the first 4 exer- 

ises but inappropriate for Exercise 5 (E5). The average accuracy of 

ll attribute combinations was greater than 90% , verifying the rep- 

esentation power of our 2T-GCN method. Because our model in- 
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Fig. 6. Quality evaluation scores of E1 and E2 (i.e., “deep squat” and “hurdle step”, respectively. 

Table 4 

Training accuracies of different attribute combinations on our EHE 

dataset. 

Exercise 

ID 

Training Accuracy (%) 

angular angw xyz xyzh xyzhangw 

E1 100.00 100.00 100.00 100.00 100.00 

E2 99.31 100.00 100.00 100.00 100.00 

E3 100.00 100.00 100.00 100.00 100.00 

E4 100.00 100.00 100.00 95.70 100.00 

E5 86.49 89.19 56.76 66.22 100.00 

E6 100.00 100.00 98.59 85.92 100.00 

Average 97.63 98.2 99.72 91.31 100.00 

Note: “xyz” refers to the 3D position attributes (x, y, z) , “xyzh ” refers 

to (x, y, z, h ) , “angular” refers to (X, Y, Z) , “angw ” refers to (X, Y, Z, W ) , 

and “xyzhangw ” represents using all attributes (x, y, z, h, X, Y, Z, W ) . 

Table 5 

Subjects in each cross-validation 

folds. 

CV Fold Subject ID 

Fold 1 2, 3, 1, 4, 7 

Fold 2 5, 6, 8, 9, 16 

Fold 3 10, 11, 17, 18, 23 

Fold 4 12, 13, 20, 21, 24 

Fold 5 14, 15, 19, 22, 25 
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Table 6 

Abnormality prediction accuracy for cross-validation evaluation. 

CV 

Fold 

Exercise Abnormality Prediction (%) 

E1 E2 E3 E4 E5 E6 

Fold 1 100.00 88.89 81.48 90.00 57.14 57.14 

Fold 2 97.06 74.07 82.86 92.31 75.00 75.00 

Fold 3 97.56 86.67 76.19 91.43 75.00 62.50 

Fold 4 86.67 80.00 73.08 96.15 62.50 80.00 

Fold 5 95.56 83.33 85.00 83.72 62.50 71.43 

Avg 95.37 82.59 79.72 90.72 66.43 69.21 
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olved a learning-based method, we fed all attributes to the model 

o determine whether it could automatically learn discriminative 

eatures from the data. Ultimately, the model returned promising 

esults by using all attributes of skeleton joints with 100% training 

ccuracy on all exercises. 

We also performed prediction experiments to determine 

hether our method could be used to evaluate exercise quality 

nd reflect the severity of AD. To make our experiments less biased 

ompared to simply splitting the data into a training set and test 

et, we adopted the k -fold cross-validation (CV) evaluation method, 

hich is commonly used to estimate the skill of a machine learn- 

ng model when the sample size is relatively small [40] . We set k 

o 5 for CV by splitting the data of each exercise to 5 folds based

n a cross-subjects evaluation criterion as detailed in Table 5 . 

According to the comparison of different attribute combinations 

n Table 4 , we used all skeleton joint attributes for abnormality 

rediction. Table 6 shows the experimental results of our CV eval- 

ation. Findings consistently indicated that exercises such as “wave 

ands” and “bend waist to right” (i.e., E1 and E4, respectively) 

ffectively reflected AD severity, slightly outperforming exercises 

uch as “hands up and down” (E2) and “bend waist to left” (E3). 

owever, walking-related exercises did not demonstrate good per- 

ormance in terms of AD abnormality prediction. 

To further clarify the effectiveness of the proposed method, we 

isualize the average evaluation scores of all exercises for 25 sub- 

ects in Figs. 7 and 8 (differently shaped markers). The lines in 
7 
ig. 7 indicate that the prediction results of non-walking-related 

xercises coincided with the clinical severity evaluations of AD. In 

ig. 8 , no discriminative features were apparent for walking-related 

xercises such as “walking forward” and “walking backward”. This 

esult could inform the design of exercises for rehabilitation thera- 

ies; imitating basic actions such as “walking forward” and “walk- 

ng backward” is less dependent on praxis conditions. Given that 

ur data were collected in a natural environment compared to UI- 

RMD [7] , whose data were gathered from young subjects mim- 

cking abnormal exercises, our work reflects actual circumstances 

or patients with AD. On one hand, these findings imply that pa- 

ients with AD usually exhibit unnoticeable abnormal symptoms 

uring regular walking exercises. On the other hand, the proposed 

ethod can potentially capture AD severity from exercises that re- 

uire good praxis conditions (e.g., imitation, production, or recog- 

ition of gestures). 

To quantify the performance of our 2T-GCN method, we consid- 

red two association parameters (ED and CORREL) as introduced in 

ection 5.3 . We focused on investigating which exercises contain- 

ng which skeleton data attributes could achieve optimal exercise 

valuation performance by comparing their associations with clini- 

al severity labels of AD. When considering normal subjects, Fig. 9 

hows that E1 (i.e., waving hands) may be the best exercise for 

nferring exercise quality: its evaluation scores had the lowest ED 

nd highest correlation compared with clinical evaluation. In terms 

f evaluating AD severity, based on the correlation and normalized 

D in Fig. 10 , it remains challenging to model an exercise evalua- 

ion score that is highly associated with clinical observation. No- 

ably, the results of E1 and E3 are at least consistent and positively 

ssociated with the clinical evaluation of AD, thereby validating the 

ontribution of this study. 

.4.3. Discussion 

As listed in Tables 3, 4 , and 6 , different exercises are capable

f identifying AD-related abnormalities to varying degrees. In par- 

icular, walking-related exercises in our EHE dataset displayed the 

eakest capability, namely because these exercises are daily ac- 

ions that rely less on good praxis conditions for imitation. Actions 

hat are not common in everyday life generally require good praxis 

onditions (e.g., imitation, production, or recognition of gestures) 

or good performance. 
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Fig. 7. Average action quality evaluation scores of Exercises 1 to 4. 
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Fig. 8. Average action quality evaluation scores of Exercises 5 and 6. 
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8 
Although this work underscores the potential of using a 

keleton-based method to infer AD symptoms, several limitations 

ould be addressed in future research. First, our dataset was col- 

ected at one time point. The exercises were performed daily, and 

atients symptoms might progress over time; therefore, additional 

ounds of data collection could further validate the proposed algo- 

ithm as well as the exercises effectiveness in alleviating AD pro- 

ression. Another limitation involves the lack of inter-rater valida- 

ion: we did not compare other mainstream approaches to AD di- 

gnosis because data were unavailable for various biomarkers. 

. Conclusions 

In sum, this paper presents a skeleton-based HAE method called 

T-GCN to support AD diagnosis and related behavioral therapies. 

ith respect to diagnosis, the proposed method can perform ab- 

ormality detection based on skeleton exercise data. Regarding be- 

avioral therapies, the numerical evaluation score generated from 

T-GCN can reflect elderly individuals praxis health conditions. The 

roposed method was first validated on the UI-PRMD dataset and 

isplayed superior performance compared with existing methods 

n terms of the SD. Experimental results from a real-world EHE 

ataset that we collected in an elderly home also indicated that 

ur 2T-GCN method could successfully predict abnormality from 

on-walking-related exercises, showing promise to support AD di- 

gnosis. Additionally, numerical evaluation scores generated using 

he proposed model were positively associated with AD severity. 

ur method thus appears useful for monitoring the progress of 

xercise-based interventions. In the future, we will expand these 

xperiments over a longer monitoring period and integrate the 

roposed method in real-world applications. 
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