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A Learning Approach for Suture Thread Detection
With Feature Enhancement and Segmentation

for 3-D Shape Reconstruction
Bo Lu , X. B. Yu, J. W. Lai, K. C. Huang , Keith C. C. Chan, and Henry K. Chu , Member, IEEE

Abstract— A vision-based system presents one of the most
reliable methods for achieving an automated robot-assisted
manipulation associated with surgical knot tying. However, some
challenges in suture thread detection and automated suture
thread grasping significantly hinder the realization of a fully
automated surgical knot tying. In this article, we propose a novel
algorithm that can be used for computing the 3-D coordinates
of a suture thread in knot tying. After proper training with
our data set, we built a deep-learning model for accurately
locating the suture’s tip. By applying a Hessian-based filter with
multiscale parameters, the environmental noises can be elimi-
nated while preserving the suture thread information. A mul-
tistencils fast marching method was then employed to segment
the suture thread, and a precise stereomatching algorithm was
implemented to compute the 3-D coordinates of this thread.
Experiments associated with the precision of the deep-learning
model, the robustness of the 2-D segmentation approach, and the
overall accuracy of 3-D coordinate computation of the suture
thread were conducted in various scenarios, and the results
quantitatively validate the feasibility and reliability of the entire
scheme for automated 3-D shape reconstruction.

Note to Practitioners—This article was motivated by the chal-
lenges of suture thread detection and 3-D coordinate evaluation
in a calibrated stereovision system. To precisely detect the
suture thread with no distinctive feature in an image, additional
information, such as the two ends of the suture thread or its total
length, is usually required. This article suggests a new method
utilizing a deep-learning model to automate the tip detection
process, eliminating the need of manual click in the initial stage.
After feature enhancements with image filters, a multistencils
fast marching method was incorporated to compute the arrival
time from the detected tip to other points on the suture contour.
By finding the point that takes the maximal time to travel in
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a closed contour, the other end of the suture thread can be
identified, thereby allowing suture threads of any length to be
segmented out from an image. A precise stereomatching method
was then proposed to generate matched key points of the suture
thread on the image pair, thereby enabling the reconstruction of
its 3-D coordinates. The accuracy and robustness of the entire
suture detection scheme were validated through experiments
with different backgrounds and lengths. This proposed scheme
offers a new solution for detecting curvilinear objects and their
3-D coordinates, which shows potential in realizing automated
suture grasping with robot manipulators.

Index Terms— 3-D coordinates computation, stereovision,
surgical robot, suture thread detection.

I. INTRODUCTION

ROBOT-ASSISTED manipulation (RAM) is a widely
employed technology in minimally invasive surgery

(MIS) [1] that allows surgeons to perform precise operations
with high dexterity [2], manipulability [3], and complex-
ity [4]. These manipulating systems are manually controlled
by surgeons through a master–slave device, and real-time
2-D images are available for monitoring [5]. However, despite
assistance from robotic systems, surgeons may feel tired after
a long period of operation because staring at the screen for
an extended period can cause eyesore and irritation, which,
in turn, may lead to misoperations and secondary trauma to
tissues [6]. To improve the performance of RAM, automated
manipulation can be incorporated into some low-level oper-
ations in surgery [7] by standardizing the procedure of path
planning [8] or by improving robustness via visual [9] and
force feedback [10]. Reducing the amount of human interven-
tion can improve the overall operating efficiency of RAM.

Surgical knot tying is a popular manipulation that can
be performed by robots in an automated or semiautomated
manner. The operation begins with suture threading, in which
a suture is stitched through the wound automatically by using
robotic arms. Sen et al. [11] proposed a multithrow stitching
method based on a sequential convex programming by using a
3-D printed suture needle angle positioner. Pedram et al. [12]
developed a kinematic model that describes the needle–tissue
interaction and can be used for constant curvature needle
path planning by using information about the tissue geometry,
the surgeon-defined entry/exit points, and the optimization
weighting factors.

To tighten a surgical knot, suture loops must be formed
with the suture thread. To form a high-quality loop, trajectory
planning and the optimization of the control scheme have
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been studied. Osa et al. [13] proposed a framework that can
learn the spatial motion and force information from previous
trials for online trajectory planning and automated suture
looping in a dynamic environment. Lu et al. [9] generated
a space-efficient trajectory for robot-assisted suture looping
manipulation and found that the entire operation can achieve
sufficient accuracy and robustness by using a visual guide,
an online optimizer, and a dynamic linear quadratic (LQ)
controller.

However, the works mentioned in [11] and [12] have
mainly focused on the stitching part of the process. Afterward,
the long suture thread needs to be trimmed in order to form
loops before tying a surgical knot. Due to its flexible property,
the suture thread may form various shapes arbitrarily on the
tissue or the skin surface. To automate the knot-tying task,
the 3-D coordinates of the suture thread must be accurately
determined to facilitate its grasping operation, the suture
thread stitching, and the subsequent looping manipulation
using robots.

An RGB-D camera is often used to obtain the 3-D infor-
mation of the suture thread. Mohanarajah et al. [14] used
the point cloud by running a dense odometry algorithm in
collaborative robots and achieved a 3-D visualization of the
surroundings. Stereocamera is another popular paradigm for
3-D scene reconstruction. Ren et al. [15] proposed a dual-
camera-based method that uses markers for surgical tracking.
However, these approaches either rely on feature descriptors
or markers, which can hardly cope with the detection of a
long, flexible, and featureless surgical suture thread.

To address this challenge, the segmentation and stereopair
matching of a curvilinear object in a stereocamera system are
necessary. Jackson et al. [16] proposed a stereoimage-based
algorithm that detects the suture thread by using a B-spline
model. By minimizing the image matching energy, they can
track the suture thread in real time. Obara et al. [17] proposed
a contrast-independent method that uses the phase congruency
tensor to segment the curvilinear object from noisy biomed-
ical images. Benmansour and Cohen [18] adopted the fast
marching method (FMM) to identify the closed contour or
surface with two endpoints in both 2-D and 3-D images.
Kaul et al. [19] also adopted the FMM principle to detect both
open and closed curves with a single starting input.

In recent years, deep-learning approaches have been exten-
sively used for accurate object detection. For instance,
Cha and Choi [20] proposed a vision-based inspection method
for detecting cracks on concrete images by using a con-
volutional neural network (CNN). They later improved this
algorithm to the faster region-based CNN (Faster R-CNN)
for detecting multiple types of damages [21]. Chen and
Jahanshahi [22] combined CNN and naive Bayes data fusion
for inspecting the cracks of a nuclear power plant. Their
work mainly focused on detecting crack features on a 2-D
image where object segmentation is not required for its length
evaluation. In this article, a recurrent neural network (RNN)
was employed for tip detection in a temporal sequence of
2-D images (or to model the temporal dependence) [23], and
several new algorithms were implemented for suture length
evaluation and 3-D shape computation.

Fig. 1. System illustration for suture thread 3-D reconstruction.

In this article, we present a novel approach for constructing
the 3-D model of a surgical suture thread in an arbitrary envi-
ronment. First, to reduce the need for manually clicking on two
ends of a suture, we employ a neural network to automatically
locate the suture’s tip on the image. Given that tips with less
distinctive features can easily result in ambiguous matches in
the nearby region, a long short-term memory (LSTM) was
incorporated to avoid a repeated detection of the same object.
To address the challenges in finding flexible and thin sutures
for segmentation, a Hessian-matrix-based filter was employed
for feature enhancement and noise suppression. Due to the
ambiguity of the Hessian eigenvectors’ directions in detecting
curvilinear objects [17], [24], a numerical multistencils FMM
(MFMM) [25] was applied to compute the arrival time map,
which determines the minimal arrival time from each pixel in
the image to the suture thread’s tip. Using this information,
the object can be completely segmented along the object
contour in a 2-D plane. While the method proposed in [18]
and [26] requires additional information such as the endpoint
or the object length, this article evaluates the endpoint (turn-
ing) by finding the point that takes the longest time to reach
from the tip in a closed contour. By combining the map with
the proposed front and back propagations, precise key points
can be assigned, matched, and visually corrected [27] along
the suture thread for the 3-D computation on the left and right
images. As shown in Fig. 1, by using stereoimages as inputs,
the 3-D coordinates of the suture thread from one end to the
other can be evaluated and outputted accordingly.

The rest of this article is organized as follows. Section II
introduces the deep-learning model for the suture’s tip detec-
tion. In Section III, the procedures for highlighting and seg-
menting the curvilinear object will be proposed. Section IV
presents the principle of the MFMM and its implementation
for suture detection. Besides, the segmentation of the suture
thread, its key point generation, and the stereomatching will
be introduced. Section V provides the experimental results
of the tip point detection using the deep-learning model,
the robustness of 2-D suture thread segmentation, and the
accuracy of computing its 3-D coordinates under various
environments. Section VI concludes this article.

II. INITIALIZATION USING THE

DEEP-LEARNING APPROACH

A. Deep-Learning Model for Suture Thread’s Tip Detection

To locate the suture’s tip in an image, we used the
deep-learning-based object detection model proposed by
Stewart et al. [23], which uses a CNN ImageNet for feature
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Fig. 2. General framework of the deep-learning model. Using our own data set to train the model, the LSTM can act as a controller for the suture thread’s
tip detection. With the implementation of the Hungarian Loss, the optimal position of the suture thread’s tip can be picked out from the image.

encoding and an RNN with LSTM units to sequentially decode
bounding boxes, as shown in Fig. 2.

The advantage of ImageNet lies in its representational
power to encode multiple objects, thereby providing enough
robustness for extracting a single suture’s tip. LSTM can
memorize the previous output of the bounding box and then
feed this output as input to the next layer for modeling the
generation sequence of the next bounding box. Given that
the generated sequence will not be duplicately produced in
the later stage when conducting object detection, the whole
procedure can proceed effectively.

To reduce the computation cost, the image is compressed
into 640 × 480 pixels, and then, a new bounding box and the
confidence that this box includes the undetected suture thread’s
tip will be computed as the output in each layer of LSTM.
Boxes are produced in a descending confidence order, and each
new detection will be conditioned based on the previous one.
By using a prespecified threshold, the detection is terminated
when the LSTM is unable to find a new box with a confidence
above the threshold value. Until this stage, the output sequence
can be collected and presented as a final description of all
object instances in the region. In our task, the desired target
is a single suture thread’s tip. Given that LSTM will output
a prediction set of bounding boxes, as shown in Fig. 2,
we employed an optimizer to find the optimal position of the
suture’s tip from the detected candidates.

B. Optimization Using Loss Function

By assuming the outputs of the collected sequential can-
didates as O which is shown in Fig. 2, we utilized the
Hungarian algorithm [23] to model the bipartite matching
between the predicted outputs O and the ground truth G
in polynomial time. The loss function associated with the
Hungarian algorithm which models the distance between the
predicted outputs O =

�
B̃ j | j = 1, 2, . . . , N

�
and the ground

truths G = �Bi |i = 1, 2, . . . , N
�

follows:

L(G,O, f ) = ν

|G|�
i=1

lpos
�Bi

pos, B̃ f (i)
pos

� +
|O|�
j=1

lc(B̃ j
c , y j )

+
|G|�
i=1

|O|�
j=1

�
�Bi , B̃ j� (1)

where the localization accuracy is equal to lpos = ||Bi
pos −

˜B f (i)
pos ||1 and represents the displacement between the positions

of the ground truth and the candidates. The detection confi-
dence lc determines the cross-entropy loss on a candidate’s

confidence to the match of the ground truth, and f denotes
the bipartite matching between O and G in polynomial time
as obtained by the Hungarian algorithm.

III. IMAGE FILTER FOR CURVILINEAR

OBJECT SEGMENTATION

With the detected tip, the following step is to segment
the suture thread from the background. In various conditions,
an image may contain undesired noises that need to be filtered
using proper image filters before the object segmentation.

Several image denoising and enhancement filters have been
comprehensively developed, including the smooth filter [28],
Gaussian filter [29], max–min filter [30], and weighted median
filter [31]. However, these filters do not show satisfactory
performance in segmenting curvilinear objects. In order to
enhance the curvilinear information, the second derivatives
with the Gaussian kernel are implemented [32].

For a stereocamera, the 2-D left and right frames can be
denoted as Cl and Cr , and their respective image domains
can be denoted as �l,�r → R

+, where the subscripts l and r
denote the left and right cameras, respectively. To distinguish
curvilinear features at various conditions, a multiple scale
parameter σi was implemented.

By taking one camera frame for example, after transforming
the color image into grayscale, the local behavior of point
pi ∈ � can be determined as its Taylor expansion as

C(pi + �pi , σi ) ≈ C(pi , σi ) + δpT
i ∇i,σi + δpT

i Hi,σi δpi

(2)

where the expansion approximates the image structure up to
the second-order derivatives, while ∇i,σi and Hi,σi denote the
gradient vector and the corresponding Hessian matrix that
are computed at scale σi [33]. To highlight the curvilinear
information, we processed the image by applying a Gaussian
filter with a size of (3σi + 1) × (3σi + 1). The 2-D Gaussian
filter is defined as

G(pgau, σi ) = 1

2πσ 2
i

· e
− ||pgau||2

2σ2
i (3)

where pgau = [XG , YG ] is the image coordinates of the
filter. Based on (2), the third term of the Taylor series gives
the second derivatives of image C, with H being the Hessian
matrix, which can be expressed as

H(σi ) =
	

Ix x(σi ) Ixy(σi )
Ixy(σi ) Iyy(σi )



. (4)
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According to the scale-space theory, the Hessian matrix
can be represented by the convolution between the second
derivatives of the Gaussian filter and the image as follows:⎧⎪⎪⎨⎪⎪⎩

Ix x(σi ) = ∂2

∂x2 C(σi ) = σ
γ
i · ∂2

∂x2 G(pgau, σi ) ⊗ C(σi )

Ixy(σi ) = ∂2

∂x∂y C(σi ) = σ
γ
i · ∂2

∂x∂y G(pgau, σi ) ⊗ C(σi )

Iyy(σi ) = ∂2

∂y2 C(σi ) = σ
γ
i · ∂2

∂y2 G(pgau, σi ) ⊗ C(σi )

(5)

where ⊗ is the image convolutional operator. We also added
a parameter γ to normalize the derivatives following the
suggestions of Lindeberg [34]. This parameter is restricted as
0 < γ < 3 [35]. To denote the second derivatives of the
Gaussian filter, h can be computed with respect to scale σi as

h(σi ) =
⎡⎣hx x(σi )

hxy(σi )
hyy(σi )

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1

2π ·σ 4
i

·
�

X2
G

σ 2
i

− 1

�
· e

−
�

X2
G +Y2

G

�
2σ2

i

1
2π ·σ 6

i
· XG · YG · e

−
�

X2
G+Y2

G

�
2σ2

i

hT
x x(σi )

⎤⎥⎥⎥⎥⎥⎥⎦ . (6)

For dark lines on a bright background, the Gaussian kernel
returns large positive values across the line and small (positive
or negative) values along the line, which can be explained by
the eigenvalues of the Hessian matrix [35].

The line structures can be detected by analyzing the Hessian
matrix and its eigenvalues. Let the eigenvalues of H(σi ) be
λ1(σi ) and λ2(σi ), and the filtered image T(σi ) of C(σi ) can
be computed as

T(σi ) =

⎧⎪⎪⎨⎪⎪⎩
0, λ2(σi ) < 0

e
−

R2
b,σi

2β2 ·
�

I − e−S2
σi

2C2

�
, otherwise

(7)

where Rb,σi = λ1(σi )/λ2(σi ), Sσi = (λ1(σi ) + λ2(σi ))
1/2, β,

and C are the threshold parameters that control the sensitivity
of the filter to the measures of Rb and S, respectively [36].
By repeating the above procedures with different scale para-
meters σi , the optimal image can be chosen [34] at the local
maxima as follows:

T = max
σmin≤σi≤σmax

T(σi ). (8)

By setting a proper threshold, T can be converted into a binary
image in which the surrounding noises are initially eliminated.

IV. SUTURE THREAD SEGMENTATION

AND KEY POINT MATCHING

To compute the 3-D coordinates of a suture thread, sufficient
numbers of key points and their respective stereopairs should
be obtained. Therefore, an accurate description of the suture
thread from its tip to the end is required.

To achieve this goal, the minimal action map [18] was
computed by using the images T captured from the camera
frame. Within a 2-D image, its form of energy E can be
expressed as

E(φ) =
�

φ
{P(φ(ε)) + w}d� =

�
φ

�P(φ(ε)d� (9)

where φ denotes the curve within the image domain
� → R+, and P is the potential image of the input image T.
The minimal action map highlights the curvilinear information,
and the choice of P depends on the specific application. In our
task, we set P as

P = (s · ∇T + ξ)−4 (10)

where s is a parameter that highlights the variation along the
suture thread boundary, and ξ and ω in (9) and (10) are small
positive constants that can be tuned by users. The value of
(1/�P) represents the traveling speed when crossing each pixel.
Therefore, our potential function aims to set the boundary
of the suture thread with a high traveling speed, while the
background pixels with slow traveling velocities.

By treating the detected tip pt as the source point, for any
point pi ∈ �, the minimal path denotes the trajectory along
which the propagation time between pt and pi obtains the
minimal value. Consequently, the curve εi between tip pt and
point pi within the domain � that can minimize the energy
function E can be determined as

∀pi ∈ �,M(pi ) = min
φ∈Pathpt ,pi

��
φ

�P(φ(ε)d�

�
(11)

where Pathpt ,pi denotes all paths that connect point pi to
source point pt within �. Traveling along a minimal time
path, M(pi ) denotes the arrival time between pi and pt . When
traveling across point p j , the velocity only depends on the
value (1/�P(p j )) [37] and satisfies the Eikonal equation as�

||∇M(pi )|| = �P(pi ), pi ∈ �

M(pt ) = 0.
(12)

For each point pi within the image, the original pixel
value can be substituted by its arrival time M(pi ). Therefore,
the arrival time map of the corresponding input image can
be obtained. To achieve this goal, the fast marching method
(FMM) developed in [25] was incorporated into our scheme.

A. General Principle and Derivation of FMM

To obtain the arrival time from any point to the source point,
the method proposed by Rouy and Tourin [38] along with the
solution of the correct viscosity was implemented. For point
[i, j ] ∈ �, the equation approximated using the first-order
finite difference in a discrete format can be obtained as

max

�M(i, j ) − Mx


x
, 0

�2

+ max

�M(i, j ) − My


y
, 0

�2

= �P2(i, j) (13)

where 
x and 
y denote the pixel spacing along the horizontal
and vertical directions within the image. We also have

Mx = min
�M(i−1, j ),M(i+1, j )

�
My = min

�M(i, j−1),M(i, j+1)

�
. (14)
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The solution of (13) can be solved as follows.
1) M(i, j ) > max(Mx ,My), where M(i, j ) is the maxi-

mum solution of the quadratic equation:
M(i, j ) = (((Mx + My)

+
�

2�P2(i, j) − (Mx − My)2)/(2)).

2) Mx > M(i, j ) > My , M(i, j ) = My + �P(i, j).
3) My > M(i, j ) > Mx , M(i, j ) = Mx + �P(i, j).

To finalize the FMM process, all pixels in the entire image
domain were labeled with the following sets.

1) Alive Set pAlive : For points pi belonging to this set,
the arrival times Mpi

have been computed and fixed.
2) Trial Set pT rial : Four neighbors around the alive set, and

their arrival times may be changed in the later iteration.
3) Far Set pFar: For those points that have not been

reached, and their arrival times have not been calculated.

Algorithm 1 FMM for the 2-D Image
Data: Image Tl and Tr , source points pt,l and pt,r

1 For each image, the tip of the suture thread is labeled as
the alive set, which is initialized as Mpt

= 0;
2 Four neighbors of pt are labeled as the trial set, and their

corresponding arrival times MpT rial can be computed
using Eq. (13);

3 Set other points as the far set p f ar : Mp f ar
= ∞;

4 Pick the local minima of MpT rial
, and sort the

corresponding point to the alive set;
5 Loop the procedure: while p f ar �= ∅ do
6 Exam the four neighbors of the all alive points;
7 if Neighbors /∈ pAlive then
8 Update the arrival time MpT rial

using Eq. (13);
9 Move point which has the local minima among

MpT rial
to the alive set pAlive ;

Result: The map of arrival time Mpl
and Mpr

with
respect to the source point

The general process of FMM is summarized in Algorithm 1.
First, the source point is sorted as the alive set. Afterward,
the four neighbors of the alive set are treated as the trial set,
and their arrival times can be computed. The point with the
minimal action M among the trial set MpT rial

can be updated
to the alive set. Then, loop the above procedure, and one new
point can be updated into the alive set in each iteration. This
procedure is terminated when the arrival times of all points
within the image domain are determined.

However, FMM only makes use of four neighbors but
neglects the diagonal information. In this case, the arrival
time amp may not be accurate enough. Moreover, the solu-
tion of (13) only uses the first-order approximation, which
introduces additional errors when calculating the arrival time
map. These shortcomings potentially harm the accuracy of the
upcoming suture thread segmentation.

B. Arrival Time Map Computation Using MFMM

To achieve a higher precision and resolve the aforemen-
tioned problems, an enhanced method called MFMM [25] was

Fig. 3. Normal coordinate using (a) first-order and (c) second-order approx-
imations. The rotated coordinate using (b) first-order and (d) second-order
approximations.

adopted to compute the arrival time map M while considering
the diagonal information.

Consider that the natural Cartesian coordinate is rotated with
an angle α, as shown in Fig. 3(b) and (d). For any point (x, y)
in the natural coordinate, its new position (x , y ) in the rotated
coordinate can be denoted as

x  = x cos α + y sin α

y  = −x sin α + y cos α. (15)

Using the chain rule, the partial derivatives of the arrival
time M with respect to x and y can be derived as

Mx = ∂M
∂x

= ∂M
∂x  · ∂x 

∂x
+ ∂M

∂y  · ∂y 

∂x

My = ∂M
∂y

= ∂M
∂x  · ∂x 

∂y
+ ∂M

∂y  · ∂y 

∂y
. (16)

By substituting (15) into (16) and letting the rotational angle
be 45◦, we can easily obtain

M2
x + M2

y = ∂2M
∂x 2 + ∂2M

∂y 2 = M2
x  + M2

y

⇒ �P2
(x,y) = |∇M(x ,y)|2. (17)

It is noticed that (17) is also the Eikonal equation, which
indicates that ∇M(x ,y) in the rotational coordinate can be
computed by solving the Eikonal equation along the new
directions x  and y. Therefore, the arrival time along the
diagonal direction can also be solved by following the FMM
principle in a rotational system. For point [i, j ] ∈ �, we have

2�
ζ=1

max

�
Cζ · M(i, j ) − Mζ


ζ
, 0

�2

= �P2(i, j) (18)

where Cζ denotes the approximation coefficient, and 
ζ is the
adjacent pixel distance. For a natural system, 
ζ is equal to 1,
whereas for a rotational system, it is equal to

√
2. To further

improve the accuracy of the arrival time map, the following
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TABLE I

VALUES OF THREE ϒ

second-order approximation proposed in [39] was adopted:⎧⎪⎨⎪⎩
Mx = min

ax∈{1,−1}

�
4M(i+ax , j)−M(i+2·ax , j)

3

 
My = min

ay∈{1,−1}

�
4M(i, j+ay )−M(i, j+2·ay )

3

 
.

(19)

The selection of the parameters is summarized as follows.

1) Adopting the first-order approximation, Cζ = 1, Mζ can
be solved by using two adjacent neighbors, as shown
in Fig. 3(a) and (b) and by using (14).

2) Adopting the second-order approximation, Cζ = 3/2,
Mζ can be solved by using (19), whereas the two-pixel
away points are provided as shown in Fig. 3(c) and (d).

Equation (18) can then be transformed as

ϒ(1)M2
(i, j ) + ϒ(2)M(i, j ) + ϒ(3) = �P2(i, j) (20)

where coefficients ϒ(1), ϒ(2), and ϒ(3) are listed in Table I.
Therefore, the arrival time of M(i, j ) can be computed as

the minimal positive solution of (20) as follows:

M(i, j ) =
−ϒ(2) ±

�
ϒ2

(2) − 4ϒ(1)(�P2(i, j) − ϒ(3))

2ϒ(1)
. (21)

The expansion procedures of the FMM and MFMM
when calculating the arrival time map are shown in the
Supplementary Material. Starting from the source point,
the FMM only expands in the horizontal and vertical direc-
tions, whereas the MFMM preserves this property while
adding the diagonal expansion. As a result, the narrowband
formed by pTrial is larger in MFMM than that in FMM.
When using the arrival time map to segment the suture
thread, the FMM only gives the propagation path in either the
horizontal or vertical direction, whereas the MFMM allows
the diagonal shape, thereby increasing the precision of recon-
structing the 3-D shape of the suture thread.

C. Segmentation and Point Matching of the Suture Thread

With the rectified stereocamera [40], the arrival time map
M and suture thread’s tip position pt can be obtained.
A convenient and accurate stereomatching algorithm was
then built for the suture thread’s segmentation and matching.
Starting from tip point pt , the potential function gives a larger
traveling velocity (1/�P) along the suture contour, and the
desired neighbor that connects the tip should be the point that
possesses the minimal value Mmin.

As shown in Fig. 4, the yellow denotes part of the contour
area that has a high traveling speed. Starting from the suture

Fig. 4. Selection of the suture thread contour point (a) from the tip position
to (b) the whole structure, using the minimal increasing principle.

Fig. 5. Illustration of the end (turning point) evaluation.

thread’s tip pt , its eight neighbors are initially evaluated,
as shown in Fig. 4(a). The second pixel p2 was selected based
on the minimal increasing principle. It is noticed that Neb1
and Neb2 are two neighbors centered at pt and p2. When
evaluating the eight neighbors of p2, Neb1 or Neb2 can be
selected as connecting elements, which can lead to a trapped
zigzag or even a false segmentation result.

To eliminate the potential mistake and the unfavorable
zigzag shapes, the remaining neighbors among the adjacent
eight candidates should be added to an expandable frozen
set F1. Therefore, in the second iteration, the nonfrozen
neighbors of p2 are evaluated and the connecting point p3
could be selected. During the front propagation segmentation,
the contour member pk should satisfy

∀pi ∈ Nk−1 ∧ pi /∈ Fk−1, Mpk = min
�Mpi

�
(22)

where Nk−1 denotes the eight neighbors of contour point pk−1
as identified in the latest iteration, and Fk−1 denotes all frozen
elements in the previous (k − 1) steps. Following the above
principle, the contour can be sequentially segmented based on
the arrival time map M, as shown in Fig. 4(b).

To locate the other end of the suture thread, a specific stop
criterion should be introduced in the iterative computation.
By using the contour of a suture thread outlined in Fig. 5,
the key points numbered as {p2, p3, . . . , p j , . . . } share one
high-velocity contour path when traveling to the tip pt ,
as denoted by the orange line. Apart from the first path, there
also exists a second path with a high traveling speed, as indi-
cated by the pink line. The overall contour of the suture thread
can be treated as a semisymmetric object. When computing
the minimal increasing manipulation iteratively, there would
exist a turning point pturn after which the following point pk
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Fig. 6. Workflow of the suture thread segmentation in a calibrated stereocamera system. The inputs are the stereoimages. With the pretrained tip predictor,
multiple image operators, and the arrival time-based segmentation, the key points of the suture thread in two images can be obtained. They can be utilized
to obtain the final output of its 3-D coordinates.

holds the inequality Mpk
< Mpturn

. This turning phenomenon
happens around the other end. Using this property, point pturn
can be treated as the end position. In the left and right cameras,
these segmented points are, respectively, recorded in point sets
Sl and Sr . Given that the arrival time M of each selected pixel
point cannot strictly obey the rule Mpi > Mpi−1 during the
front propagation, a tolerance parameter χ was embedded. The
final stop criteria can be defined as follows.

1) For current point pi , if there exist χ members in set
{pt , p2, p3, . . . , p(i−1)} whose arrival times are larger
than Mpi

, then the current point can be regarded as
the turning point pturn and the front propagation should
be terminated.

At this stage, the shape of the suture thread can be initially
outlined in the left and right camera frames. Given the asym-
metric and irregular behavior of a suture thread, the evaluated
turning point pturn may not be the precise end of the suture
thread. Therefore, a back propagation was performed to refine
the segmented shape.

First, a region of interest (RoI) was created by using pturn
at the center. By combining the filtered potential image of
the suture thread obtained in Section III together with the
tip-refined algorithm proposed in [27], the accurate end pe
of the suture thread can be achieved in two camera frames.

Starting from pe and evaluating the local minimal value
M of nonfrozen neighbors, those elements belonging to the
suture thread’s contour can be identified via back propagation.
The suture’s tip pt holds the property of Mpt

= 0. Con-
sequently, the back propagation should be terminated when
the current arrival time satisfies this condition. By recording
the pixels selected in every iteration, a complete one-side
contour of the suture thread with a sequence from the tip
to end can be obtained in both cameras. The overall work-
flow of the 2-D suture thread segmentation is summarized
in Fig. 6.

The 3-D suture thread can be regarded as a combination
of successive subsegments. To precisely reconstruct the suture
thread’s shape, sufficient key point pairs that are well aligned
in the rectified stereocamera must be extracted. For any key
point pi,l along the suture thread in the left camera, there
should exist one point p j,r in the right camera to the extent
that these two points have the same image row number and
vice versa. In other words, i and j should be equal. The
total segmented points along the suture thread in both camera

Fig. 7. Key point matching and 3-D shape computation of the suture thread
based on rectified image pairs in a stereocamera.

frames must also be equal to each other, and we denote this
number using the parameter Kr,l .

To select N key points from the segmented points’
set, the tip point can be regarded as pk1,l and pk1,r .
As shown in Fig. 7, we selected one point from Sl =
[pt,l, p2,l , p3,l , . . . , pe,l ] and Sr = [pt,r , p2,r , p3,r , . . . , pe,r ]
in every

!
Kr,l/N

"
element. These contour points can be

repositioned to the centerline of the suture body by using the
refinement method presented in [27]. For the obtained 2-D key
point pairs pki ,l = [ui,l , vi,l ] and pki ,r = [ui,r , vi,r ], their 3-D
coordinates pki

= [Xi , Yi , Zi ] can be computed as

⎧⎪⎨⎪⎩
Xi = ui,l · Zi/F
Yi = ui,l · Zi/F
Zi = F · b/(ui,l − ui,r )

(23)

where F and b denote the focal and the baseline lengths of the
stereocamera, respectively. Therefore, the 3-D coordinates of
the suture thread with respect to the camera can be computed
and illustrated point by point.

The contents presented in Section IV-C are the stereomatch-
ing approach, and its pseudocodes are listed in Algorithm 2.
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Algorithm 2 Vision-Based Algorithm of Image Segmen-
tation and Stereomatching for 3-D Shape Reconstruction
of a Suture Thread in a Stereocamera System
Data: Based on stereo images and tip predictor,

we obtained arrival time map Ml and Mr , source
points pt,l and pt,r . Take one frame as an example
and ignore the subscript l and r .

1 The tolerance, the current iteration number, point, arrival
time, frozen set, and valid contour point are set as χ ,
c = 1, pc = pt , Mc = Mpt

= 0, F1 = Null, and S = pt ;
2 while IN < χ do
3 Set the inspect number as IN = 0;
4 Increase iteration number as c = c + 1;
5 if ∀pi ∈ Nc−1and /∈ Fc−1 then
6 Evaluate each patch Mpi

;
7 Find the point obtains the minimal arrival → Treat

it as the current contour point pc → Add it to S;
8 Add pc and remaining neighbors to Fc;
9 for each p j ∈ S do

10 if Mp j
� Mpc

then
11 IN = IN + 1;

12 The last element of S is pturn → Adopt the contour
closure algorithm → The optimized pe can be obtained;

13 According to Step 1, reset the corresponding parameters
as c = 1, pc = pe, F1 = Null, and S = pe;

14 while Mpc
�= 0 do

15 Repeating Step 5∼8 → Iteratively update the point
set of the segmented suture thread;

16 Set the desired key points number as N ;
17 Pick out the selected points in the left and right camera

→ Apply key points optimizer → Locate key points to
the centerline of the suture thread;

18 Compute the 3-D coordinates of these key points wrt. the
stereo-camera;
Result: The key points’ coordinates and the 3-D shape

of the suture thread with respect to the camera
coordinate.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To comprehensively evaluate the feasibility and robustness
of our proposed scheme with multiple operators, we performed
validations from three aspects. First, we examined the feasibil-
ity of detecting the suture thread’s tip using the deep-learning
model. Second, we verified the performance of the
2-D segmentation algorithm by using different backgrounds
filled with noise. Third, we validated key point matching and
3-D shape computation of the suture thread by using the
stereomatching algorithm.

A. Performance Validation of the Deep-Learning Model

To thoroughly validate the performance of the deep-
learning-based method, three types of data based on different
materials were adopted in our training and testing experiments.
To label the ground truth of the suture thread’s tip in each

Fig. 8. Typical results and precision–recall curves of the deep-learning model
for the tip detection based on the background of (a) artificial tissue, (b) porcine
tissue, and (c) hybrid data.

image, a bounding box with two pixels that represent the left
top and right bottom locations was manually created. By set-
ting the width of the squared bounding box to 32 pixels, all
images in the database were labeled with their corresponding
bounding boxes that were stored in json format.

In the first set, we acquired 1278 labeled images on various
artificial tissues, of which 923 images were used for training
and the remaining 355 images were adopted for testing.
We prepared the second set of data by using porcine tissue and
obtained 1215 labeled images, among which 972 were used
for training and the remaining 243 were adopted for testing.
In the last set, we combined the training data from the previous
two sets to train a new model for tip prediction and then used
the remaining combined images to test the new model.

We set the batch size to 1 and then applied root-mean-square
propagation (RMSprop) as the optimizor with a learning rate
of 0.001. We trained the model on a workstation with a Nvidia
Quadro P5200 GPU. After 10 000 iterations, which were
almost 11 epochs, the model converged with high accuracy.
Images of the testing results from the three groups are shown
in Fig. 8. The processing time for tip detection by using the
trained predictor is 0.28 s per testing image.

In Fig. 8, the red squares indicate the prediction candidates,
while the green squares denote the final selection of the
suture thread’s tip location using the Hungarian algorithm.
The precision–recall curves are also shown in this figure,
and detailed information regarding the precision, recall, and
F1-score can be found in Table II. The high-quality per-
formance of this deep-learning-based approach confirms that
the model has a satisfactory detection performance compared
with the other general methods used in object recognition
tasks. Compared with common data sets, such as MNIST and
CIFAR [41], which require more than 10 000 training images
for building an object detection model, the deep-learning
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Fig. 9. Experimental results of a suture thread detection with different backgrounds. Pure light and dark backgrounds were implemented in the first and second
groups. In the third trial, noises were randomly added, and the artificial tissue and porcine were adopted in the fourth and fifth groups.

TABLE II

PERFORMANCE VALIDATION OF THE DEEP-LEARNING MODEL

BASED ON DIFFERENT BACKGROUNDS

method adopted in this article can train a model for accurate
tip detection by using less than 1000 training images.

B. Validation of Suture Thread’s Segmentation

To test the robustness of the segmentation algorithm,
we examined a suture thread in five different scenarios.
We also performed three trials in each scenario, with two
trials shown in Fig. 9. In the first scenario, a pure background
that shows an obvious color contrast to the suture thread was
adopted. By using the arrival time map and the detected tip
point that was treated as the source point, the suture thread
can be successfully segmented from the background, whereas
its key points can be obtained in the image.

To further test the robustness, the color contrast between the
suture and the background was decreased, and the environmen-
tal disturbance was increased by randomly adding noises to the
background in the second and third scenarios. According to the
results, the suture thread’s shape was successfully segmented
by the proposed scheme. In the last two groups, the experiment
was performed on an artificial tissue and porcine meat. The
results successfully validate the efficacy of our algorithm for
the 2-D shape segmentation of suture thread.

1) Precision of Exit Point Detection: Detecting the suture’s
exit point plays an important role in determining the com-
pleteness of its 2-D segmentation, the precision of the stereo
key point matching, and the overall 3-D length computation.
To validate its accuracy, we compared the detected exit points
in the front and back propagations with the manually labeled
ones. The detailed results are recorded in Table III.

Fig. 10. Box plot of 2-D segmentation errors based on random key points’
validations from a total of 40 experiments. (a) Artificial tissue 1. (b) Artificial
tissue 2. (c) Porcine with strong light. (d) Porcine with dark light.

The turning point was initially figured out by using the pro-
posed stop criterion during the front propagation. The turning
point shows larger errors (between 10 and 20 pixels) than
the ground truth. The back propagation can then efficiently
decrease these errors to around 5 pixels and significantly
enhance the output of the 2-D suture thread segmentation task.

2) Accuracy of Suture Thread Segmentation: After detecting
the two ends and the arrival time map, the complete suture
thread can be segmented. To validate the accuracy of the
curvilinear shape segmentation, two artificial tissues and two
porcine tissues under different light intensities were examined.
The suture thread on the tissues was stitched arbitrarily
to form various shapes. Afterward, ten random key points
along the suture were manually selected as ground truth, and
their position errors with respect to the segmented suture
in 2-D were evaluated. For each background, ten experiments
were conducted. The mean errors concerning the units of
pixels and millimeters are listed in Table IV, and the error
variation in each experiment was computed by using a box
plot, as shown in Fig. 10. It is noticed that the largest error
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TABLE III

EXPERIMENTS OF A SUTURE THREAD’S EXIT POINT DETECTION AMONG DIFFERENT BACKGROUNDS

TABLE IV

MEAN ERRORS OF A SUTURE THREAD’S SEGMENTATION BASED ON

RANDOM POINTS’ VALIDATIONS. UNIT: PIXEL AND mm

Fig. 11. Computed 3-D shape of a suture thread with a rotation angle of
(a) −45◦, (b) −22.5◦, (c) 0◦, (d) 22.5◦, and (e) 45◦. The suture thread was
formed in a semiheart shape.

was around 8 pixels/0.4 mm, and the average error values
were all below 6 pixels/0.3 mm. These tests prove that our
method can enable an accurate suture thread segmentation with
key points generated along the suture for the following 3-D
reconstruction.

C. 3-D Coordinates Computation of the Suture Thread

1) Evaluating the Consistency of Suture Thread 3-D
Computation: To examine the 3-D computational accuracy of
the suture’s length, we initially measured the actual length
between the tip and exit point. In the first test, we performed
suture thread tracking by using the suture to form a semi-
heart shape. As shown in Fig. 11, the orientation of the
tissue was then changed from −45◦ to 45◦ at an increment
of 22.5◦. By rotating the tissue to different orientations, its
corresponding shape and length in 3-D can be obtained, and
the robustness of the vision-based algorithm can be evaluated.

TABLE V

COMPUTED 3-D LENGTHS AND ERRORS OF A SUTURE THREAD

WITH DIFFERENT ORIENTATION ANGLES ON THE WORKING
PLANE (GROUND TRUTH LENGTH: 85 mm)

In the figure, the segmented sutures were highlighted in
colored curves and the 3-D shapes were shown from two view
angles. The computed lengths are presented in Table V. It can
be seen that the detection errors were all below 1.5 mm and
the error-to-length percentages were within 2%. Considering
the workspace used for the experiments, this amount of
error is fairly accurate to achieve a reliable automated tool
manipulation for grasping the suture thread.

2) Quantitative Evaluation of Suture Thread’s 3-D Length
Computation: To further validate the performance of the
proposed method, we utilized three artificial tissues and two
porcine meats as backgrounds. The suture thread was then
fixed to different lengths in each experimental set, and six
experiments with variant backgrounds and suture’s orienta-
tions/locations were carried out. Two experimental results from
each set are shown in Fig. 12, and the remaining outcomes are
presented in the Supplementary Material.

In the first set, the length was fixed at 50 mm. Fig. 12(a)
presents the segmented shape, the arrival time map, and the
3-D coordinates of the suture thread with respect to the camera
coordinate. To clearly observe its 3-D shape, the results are
also shown from two view angles. Based on the acquisition
of the stereo key point pairs of the suture thread, its spatial
coordinates can be obtained by using the triangulation rela-
tionship. By comparing its 3-D structure to the ground truth,
the overall shape appears to be correctly constructed.

In the second and third sets, the suture’s lengths increased to
80 and 100 mm, respectively. As shown in Fig. 12(b) and (c),
the suture can be successfully detected and its 3-D shape
is highlighted by using the red curve. The porcine tissues
were used in the fourth and fifth sets to validate the practical
feasibility of our approach. With different light intensities,
it can be noticed that the 3-D information of the suture thread
can be achieved regardless of its location and orientation.

Moreover, the computed lengths are presented in Table VI.
Compared with the ground truth, the maximum error in the
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TABLE VI

COMPUTATIONAL RESULTS FOR THE OVERALL 3-D LENGTH OF SUTURE THREADS IN DIFFERENT SCENARIOS. UNIT: mm

Fig. 12. Typical results of the overall 3-D shape computation of the suture thread. Key points’ correspondences were figured out along the suture thread in the
stereocamera system. The suture length and the background were set as (a) 50 mm—artificial tissue 1, (b) 80 mm—artificial tissue 2, (c) 100 mm—artificial
tissue 3, (d) 100 mm—porcine tissue with dark light, and (e) 100 mm—porcine tissue with strong light.

Fig. 13. Box plot of errors for the computed 3-D length of a suture thread
in various conditions. (a) Absolute errors. (b) Corresponding error-to-length
ratios in each experimental set.

first group was 0.90 mm. Increasing the total length also
increases the computed errors. With a ground truth of 100 mm
in set 3, the largest error reached 1.74 mm in experiment 2.
Compared with the total length, the error-to-length ratio was
only 1.74% in this condition. In all 30 experiments, the max-
imum value of this ratio was only 1.8%, which happened in
set 1 experiment 6.

Referring to the workflow in Figs. 6 and 7, the majority
of the computational time was spent on generating the arrival
time map. Given the different resolutions of the input camera
frames, the time consumption varies from 30 to 120 s for
each camera. All the other steps in the 3-D suture thread
reconstruction can be finished within 10–20 s.

Compared with [42], which focused on catheter tip detec-
tion, this article aims to provide a comprehensive solution
toward figuring out not only the suture’s tip but also its
entire shape. Besides, our tip detection error can be limited
to within 0.5 mm, which is more accurate compared with the

minimal error of 3.7 mm reported in [42]. For the work in [43],
they mainly studied the segmentation of the suture thread in
a 2-D condition. In this article, we extensively considered
suture’s 3-D reconstruction by using a stereocamera, and the
physical length of the suture thread in various conditions was
evaluated. In [16], the procedure requires a manual selection of
one suture’s endpoint, and the accuracy in evaluating the length
depends on the selected mathematical model to represent the
current suture’s shape. However, in this article, the computa-
tion can be initialized by using a deep-learning model, and we
proposed a model-free approach. Besides, the maximal error-
to-length ratio is only 1.8% as shown in Fig. 13, which is
more accurate than the value of 4.75% reported in [16].

VI. CONCLUSION

In this article, we presented a novel stereovision-based
algorithm to reconstruct the 3-D coordinates of a suture
thread. To automate the procedure, a deep-learning model
was implemented to detect the suture thread’s tip. An image
filter with multiple image preprocessing operators was built
to enhance the curvilinear structure of the suture thread while
eliminating environmental noise. To precisely and completely
describe the suture thread, a novel concept based on the
arrival time of the propagation, which was calculated based on
the multistencils fast marching principle, was adopted. Based
on this knowledge, the suture thread can be segmented by
using the front propagation algorithm and efficiently refined
through the back propagation approach. Contours of the
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suture with zigzag or redundant paths can be eliminated,
thereby ensuring the precision of key points’ matching and
3-D shape computation in the stereocamera. The accuracy
of the deep-learning model for suture’s tip detection was
examined by using different backgrounds. The performance of
the proposed approach in 2-D image segmentation, 3-D shape
reconstruction, and spatial length computation of the suture
thread was then comprehensively and successfully validated
across various experimental scenarios.

Based on these findings, our approach can be successfully
implemented to compute the 3-D length and coordinates of
a surgical suture thread, thereby reducing the human inter-
vention and facilitating an automated manipulation of the
vision-based suture thread grasping task by using a robot,
which gives a promising future of achieving a higher level
of automation in the task of robot-assisted surgical knot tying.
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