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Abstract

Recently, some skeleton-based physical therapy
systems have been attempted to automatically eval-
uate the correctness or quality of an exercise per-
formed by rehabilitation subjects. However, in
terms of algorithms and evaluation criteria, the
task remains not fully explored regarding making
full use of different skeleton features. To advance
the prior work, we propose a learning framework
called Ensemble-based Graph Convolutional Net-
work (EGCN) for skeleton-based rehabilitation ex-
ercise assessment. As far as we know, this is the
first attempt that utilizes both two skeleton feature
groups and investigates different ensemble strate-
gies for the task. We also examine the properness
of existing evaluation criteria and focus on evaluat-
ing the prediction ability of our proposed method.
We then conduct extensive cross-validation experi-
ments on two latest public datasets: UI-PRMD and
KIMORE. Results indicate that the model-level en-
semble scheme of our EGCN achieves better per-
formance than existing methods. Code is available:
https://github.com/bruceyo/EGCN.

1 Introduction
It has been expected to have a growing worldwide burden
caused by musculoskeletal disorders [Sebbag et al., 2019].
Physical therapists often conduct therapeutic exercises for
different rehabilitation phases of musculoskeletal disorders
such as back pain, sprains, and epicondylitis [Wyss and Pa-
tel, 2012]. However, regular rehabilitation therapy episodes
in hospital settings are often unaffordable for patients due
to their inadequate working ability [Machlin et al., 2011].
Accordingly, home- or office-based rehabilitation programs
initiated with the supervision of a therapist becomes a cost-
effective alternative [Jessep et al., 2009]. Keeping exercise
regimens in a home-based setting, however, is hard for pa-
tients to adhere to, which can even lead to higher healthcare
expenditure [Bassett and Prapavessis, 2007]. In recent years,
some home-based physical therapy systems that utilize the
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3D skeleton data collected by motion sensors have been at-
tempted to evaluate the quality or correctness of exercises per-
formed by rehabilitation patients [Komatireddy et al., 2014;
Saraee et al., 2017]. Such exercise assessment systems could
provide patient-identified barriers for increasing adherence to
home-based rehabilitation exercises, which works as a pro-
fessional therapist to motivate patients to do the therapeutic
exercises [Karmali et al., 2014].

Motion sensors such as Kinect and motion capture are used
to collect skeleton data in existing solutions [Ahad et al.,
2019]. The 3D skeleton data is a sequence of skeleton joints
featured with 3D position and 3D orientation (i.e., the angle
of a skeleton joint) as shown in Figure 1. By analyzing the
joint movement patterns thereof, abnormalities in exercises
can then be detected [Lei et al., 2019]. This tasks is a more
challenging task, especially comparing with the action recog-
nition task.Specifically, different rehabilitation exercises such
as “deep squat” and “sit to stand” can be easily recognized,
but evaluating the correctness or quality of a single recog-
nized exercise is a more fine-grained task.

In addition to the challenges, exercise assessment in the
3D skeleton data remains not well tackled. First, exist-
ing methods [Williams et al., 2019; Liao et al., 2020a;
Bruce et al., 2021b] did not make good use of the position
and orientation features together as they mainly rely on single
modal skeleton feature. Second, existing evaluation standards
used in [Williams et al., 2019; Liao et al., 2020a] impede the
exploration of effective algorithms as they do not rely on the
prediction results and can be hardly further improved based
on the results in [Bruce et al., 2021b].

We observe that the position and orientation streams of
skeleton data (see Figure 1) are structurally homogeneous
but they are heterogeneous in terms of their physical mean-
ings. Specifically, the position feature represents the global
structural movement of an exercise. While the orientation
feature describes the local characteristic of skeleton joints,
which is relatively more independent from one to another.
These two skeleton features are not mutually convertible. To
explore effective algorithms for skeleton-based exercise as-
sessment with both the position and orientation features, we
propose a learning framework called Ensemble-based Graph
Convolutional Network (EGCN) that contains various ensem-
ble strategies. Our main contributions are as follows:

• As far as we know, we are the first to explore the ef-
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fects of position and orientation features of skeleton data
for rehabilitation exercise assessment. Our EGCN ex-
plores ensemble strategies at various levels including
data level, feature level, decision level, and model level.

• We provide in-depth analysis regarding the proper-
ness of existing evaluation criteria [Liao et al., 2020a;
Williams et al., 2019] for skeleton-based exercise as-
sessment methods. Based on the analysis, we adopt
cross-validation to validate the effectiveness of methods
regarding their prediction abilities.

• We conduct extensive experiments on two latest pub-
lic datasets: UI-PRMD [Vakanski et al., 2018] and KI-
MORE [Capecci et al., 2019], the proposed model-level
ensemble in our EGCN significantly outperforms not
only other ensemble strategies but also state-of-the-art
GCN-based single modal methods.

2 Related Work
2.1 Skeleton-based Exercise Assessment
We briefly review the related work of skeleton-based ex-
ercise assessment in two perspectives: datasets and algo-
rithms. Some exercise assessment datasets have been briefly
reviewed in [Ahad et al., 2019], where only the UI-PRMD
[Vakanski et al., 2018] dataset is relevant to this study since
the other datasets are either focusing on action classification
or not skeleton-based. Comparing with UI-PRMD, KIMORE
is collected with real patient subjects and it also provides clin-
ical evaluation. According to the surveyed datasets in [Liao
et al., 2020b], we use UI-PRMD and KIMORE for our exper-
iments as they are the two latest public datasets for skeleton-
based exercise assessment.

In terms of algorithms, they can be roughly grouped
to regression- and non-regression-based methods. For
regression-based methods, early works using various Hidden
Markov Model (HMM) models were compared in [Tao et
al., 2016]. [Elkholy et al., 2019] proposed a similar HMM-
based method that has less computational overhead than [Tao
et al., 2016]. Recently, a deep learning framework [Liao et
al., 2020a] was proposed to encode the skeleton data of the
UI-PRMD dataset, which is supervised by a quality score
function. The training process of [Elkholy et al., 2019] is
supervised by the score of abnormality degree (on the scale
of 1 to 5) evaluated by a professional specialist. Unlike the
regression-based methods that require the supervision of clin-
ical scores or a score function, some non-regression-based
methods [Bruce et al., 2020; Bruce et al., 2021b] were pro-
posed to deliver a numerical exercise evaluation score by
utilizing the probability results of the SoftMax classifier or
transforming outputs before the SoftMax layer via a sigmoid
function. We follow the works of non-regression-based meth-
ods that treat the problem as abnormality prediction by con-
sidering the effects of different skeleton features.

2.2 Ensemble Learning
Ensemble learning is a hot research topic that aims to inte-
grate data fusion, data modeling, and data mining into a uni-
fied framework [Dong et al., 2020]. Typical ensemble meth-

ods usually achieve better performance through a proper com-
bination mechanism. Otherwise, simply combining ensemble
members might jeopardize the overall performance. For the
classification task, [Dong et al., 2020] categorized ensem-
ble methods to data-level, feature-level, decision-level, and
model-level. These different levels are also known as data fu-
sion strategies [Du and Swamy, 2019]. Motivations behind
ensemble learning can be forcing the diversity or indepen-
dence of submodels, focusing on local information, and ag-
gregation mechanism [Sagi and Rokach, 2018]. In the regime
of deep learning, ensemble methods have seldom been sur-
veyed although there are many ensemble-based methods be-
ing proposed. With deep learning, typical ensemble methods
usually combine or fuse the feature-level representations of
different data streams, or aggregate their results at the deci-
sion level [Baltrušaitis et al., 2019]. Meanwhile, it is also pos-
sible to follow the traditional motivation of ensemble meth-
ods by forcing the feature-level diversity or independence of
small classifiers [Ross et al., 2020]. Otherwise, proper learn-
ing methods that fuse different data streams at the model level
need to be proposed based on the comprehensive understand-
ing of the data characteristics, which is also known as modal-
based fusion [Bruce et al., 2021a] or co-learning [Baltrušaitis
et al., 2019]. In our proposed learning framework, we design
a model-level fusion method with an effective training strat-
egy and compare it with various general ensemble strategies
proposed in our EGCN.

3 Proposed Method
In this section, we introduce our skeleton-based exercise as-
sessment method. We first introduce the GCN model adopted
to extract features from the position and orientation streams
of the skeleton data. Then, we introduce various ensemble
strategies in our EGCN.

3.1 Data Structure and Notation
With N data samples, the exercise repetitions of a dataset
can be represented as S =

{
S(n)|n = 1, . . . , N

}
. An ex-

ercise repetition S(n) that begins at time t = 1 and ends
at time T with skeleton frames collected at regular intervals
can, therefore, be represented as a set of T × J skeleton
joints S(n) = {S(n)

ti | t = 1, ...T, i = 1, . . . , J}, where J
is the total number of skeleton joints. Here, a skeleton joint
S
(n)
ti = (P

(n)
ti , O

(n)
ti ) has two groups of features include the

position feature P
(n)
ti and the orientation feature O

(n)
ti . The

position feature P
(n)
ti = (x, y, z) has 3 attributes featured

the 3D cartesian coordinates of the position. The orientation
feature O

(n)
ti = (X,Y, Z) also has 3 attributes that could be

transformed to pitch, roll, and yaw values of the joint.

3.2 Representing the Skeleton Data
The skeleton frame is streamed as an ordered list of skele-
ton joints that has the position and orientation attributes. A
complete exercise repetition contains varied lengths of such
skeleton frames. We adopt a graph to represent the spatially
and temporally structured information among these joints.
The structure and the traversal rules of the graph follows
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Figure 1: Illustration of our EGCN learning framework. The framework has two inputs (i.e., skeleton position and skeleton orientation
streams) that are fed into graph convolutional networks for feature extraction. Four ensemble strategies at different levels (i.e., data level,
model level, feature level, and decision level) are illustrated in the blue dashed line rectangle area.

the works of 2T-GCN [Bruce et al., 2021b]. The skeleton
graph at time t could be represented as ϑt = {υt, εt}, where
υt = {υti|υti = S

(n)
ti , i = 1, . . . , J} denotes the graph ver-

texes containing all the skeleton joints. While εt denotes the
spatial edges representing the skeleton bones. The attributes
of each graph vertex are featured with the position and orien-
tation streams of the corresponding skeleton joint.

To perform convolutional operations, the convolutional
sampling area of a graph vertex υti is defined as a neigh-
bor set N (υti). Specifically, the strategy empirically uses
3 spatial subsets: the vertex itself, the centripetal subset that
contains the neighboring vertexes being closer to the center
of gravity, and the centrifugal subset that contains the neigh-
boring vertexes being farther from the gravity center. As-
suming there are a fixed number of K subsets in N (υti),
these subsets will be numerically indexed with a mapping
lti : N (υti) → {0, . . . ,K − 1}. For a graph vertex υti,
the convolutional operation on the spatial dimension could be
calculated as

fout =
∑

υtj∈N(υti)

1

Zti (υtj)
fin (υtj)W (l(υtj)) (1)

where υtj is one graph vertex of the defined neighbor set,
fin(υtj) is a mapping getting the attribute vector of υtj ,
W (l(υtj)) is a weight function W (υti, vtj) : N(υti) → Rc

that could be implemented with a tensor of (c,K) dimen-
sions. Here, c is the number of feature attributes. Zti (υtj) =
|{υtk|lti (υtk) = lti (υtj)}| equals to the cardinality of the
corresponding subset, which performs as a normalization
term.

For a spatial skeleton frame, the spatial convolutional layer
could be implemented by an adjacency matrix A with its ele-
ments indicating if a vertex υtj belongs to a subset of N(υti).
The graph convolution is implemented by performing a 1× 1
classical 2D convolution and multiplies the output tensor with
a normalized adjacency matrix Λ− 1

2AΛ− 1
2 on the second di-

mension, where Λii =
∑

j(A
ij) + α is a diagonal matrix

with α set to 0.001 to avoid empty rows. With K sampling
strategies

∑K
k=1 Ak, Equation 1 could be transformed as

fout =
∑K

k=1
Λ

− 1
2

k AkΛ
− 1

2

k finWk ⊙Mk (2)

where Wk is a weight tensor of the 1 × 1 convolutional op-
eration with (Cin, Cout, 1, 1) dimensions, which represents
the weighting function of Equation 1. Mk is an attention map
with the same size of Ak, which indicates the importance of
each vertex.

⊙
denotes the element-wise product between

two matrixes.
For the temporal dimension, the convolutional operation is

the same as 2T-GCN [Bruce et al., 2021b], i.e., performing
a 1 × Γ convolution on the feature map fout, where Γ is the
temporal kernel size. Both the spatial and temporal graph
convolutional layers are followed by a batch normalization
layer and a ReLU layer. A basic GCN block is the combi-
nation of a spatial convolution layer, a temporal convolution
layer, and an additional dropout layer to avoid overfitting.

Our GCN model is a stack of 9 basic GCN blocks. The
first three blocks have 64 output channels. The middle three
blocks have 128 output channels. And the last three blocks
have 256 output channels. The temporal kernel size Γ is set
to 9. To stabilize the training, the residual mechanism is ap-
plied to each GCN block. The strides of the 4th and the 7th
blocks are set to 2, while all the other blocks use a stride size
of 1. A global average pooling layer is added at the last GCN
block to pool the GCN feature map to a 256-dimensional fea-
ture vector. The last layer of the GCN model is a 1 × 1 2D
convolutional layer, transforming the feature vector to our de-
sired outputs (i.e., correct or incorrect).

3.3 Ensemble-based Learning Framework
As shown in Figure 1, we use the defined GCN model to ex-
tract features from the different skeleton input streams. In
the middle of the two separate learning pipelines, different
fusion strategies could be performed. We use g(P (n), θg)



and h(O(n), θh), where θg and θh are learnable parameters,
to denote the GCN submodels for learning features from the
skeleton position and orientation streams, respectively. The
goal is to improve the abnormality prediction performance of
our EGCN with an effective ensemble strategy. As surveyed
in [Baltrušaitis et al., 2019], fusion methods for ensemble
learning at the data level, feature level, and decision level are
commonly adopted for ensemble-based methods. Otherwise,
special data fusion design needs to be performed. In the fol-
lowing, we introduce four groups of ensemble-based methods
proposed in our EGCN.

Data-Level Ensemble. The data-level ensemble method is
also known as Sample-level Ensemble (SLE). Our SLE fol-
lows [Bruce et al., 2021b] that concatenated the position and
orientation streams at the data level and feed them to a single
GCN model, which could be represented as

y = σ(Conv(GAP (g(S(n), θg)))) (3)

where GAP is the global average pooling layer, Conv is the
fully connected convolutional layer, and σ is the SoftMax
classifier.

Feature-Level Ensemble. We investigate two Feature-
Level Ensemble (FLE) strategies. The first one, FLE-1, sepa-
rately extracts features from different skeleton input streams
and concatenate the extracted features at the feature level.
The whole model could be optimized with an end-to-end
learning process. FLE-1 can be formulated as

y = σ(Conv(GAP (Cat(g(P (n), θg),

h(O(n), θh)))))
(4)

where Cat is the concatenation operation.
The second FLE, FLE-2, is based on FLE-1 by forcing

the feature-level diversity of FLE-1. Since forcing the di-
versity of small classifiers is one of the main motivations for
ensemble-based methods, we follow the Local Independence
Training method [Ross et al., 2020] that was implemented by
penalizing the cosine similarity between the features to ap-
proximate the feature-level diversity. The loss objective of
Cosine Independence Error (ECI ) could be formulated as

ECI(f, g) = E[cos2(g(P (n), θg), h(O
(n), θh))] (5)

To incorporate ECI to our EGCN, we use the ensemble strat-
egy defined in Equation 4 and optimize the ECI together with
the cross-entropy loss of FLE-1. The whole FLE-2 model is
trained end-to-end.

Decision-Level Ensemble. Decision-Level Ensemble
(DLE) could have different training strategies for optimizing
the whole learning framework. We investigate two DLE
strategies: DLE-1 and DLE-2. For DLE-1, we aggregate
the prediction results at the decision level and train the
submodels together with an end-to-end learning process,
which could be written as

y = σ(Conv(GAP (g(P (n), θg)))

+ Conv(GAP (h(O(n), θh))))
(6)

For DLE-2, the submodels are separately trained and then
their prediction results are aggregated, which could be repre-
sented as

y = σ(Conv(GAP (g(P (n), θg))))

+ σ(Conv(GAP (h(O(n), θh))))
(7)

Model-Level Ensemble. Given the intuition that the posi-
tion and orientation features respectively represent the global
and local characteristics of an exercise, we utilize the neuron
activation values of g that represents the position stream as the
spatial and temporal importance of skeleton joints to regulate
the training of the orientation stream. This is also inspired by
existing model-based fusion methods [Baradel et al., 2018;
Si et al., 2019; Bruce et al., 2021a] that utilize an attention
mechanism by averaging the neuron activation values along
specific dimensions for the action recognition task. We do
not follow this operation as it tends to smooth out the joint
importance if we average the neuron activation values along
the spatial or temporal dimensions of the GCN feature map.
In our Model-Level Ensemble (MLE), we fuse the joint im-
portance derived from g, which is a Cout×Tout×Jout tensor,
with the model representation of skeleton orientation stream
h(O(n), θh) by element-wise multiplication along their three
dimensions. The MLE model can be written as

y = σ(Conv(GAP ( g(P (n), θg)⊙ h(O(n), θh) ))) (8)

where g(P (n), θg) is pretrained with the action recognition
task that classifies different exercises of a whole dataset. Dur-
ing the training process of h(O(n), θh), the pre-trained pa-
rameters θg of g(P (n), θg) is fixed to maintain the mutual in-
dependence of submodels g and h.

4 Experiments
4.1 Datasets
UI-PRMD. The UI-PRMD dataset [Vakanski et al., 2018]
is a popular dataset for exercise assessment, which consists
of skeletal data collected from 10 healthy subjects with ev-
ery subject performing 10 repetitions of 10 rehabilitation ex-
ercises (E1-10) like “deep squat”, “hurdle step”, and “sit to
stand”. The subjects perform every exercise in both correct
and incorrect manners. The incorrect manner is simulating
the performance of patients with musculoskeletal constraints.
Two sensors namely Kinect v2 and Vicon motion capture are
utilized to collect the dataset. Both sensors provide posi-
tions (i.e., 3D Cartesian coordinates) and orientation features
of skeleton joints. According to the results in [Bruce et al.,
2021b], Kienct v2 turns out to work better than Vicon motion
capture. Hence, we use the data of Kinect v2 for experiments.
As the dataset contains inconsistent samples caused by mea-
surement errors and performing with incorrect limbs, we use
the consistent version provided by [Liao et al., 2020a], which
has 1, 326 exercise repetitions in total.
KIMORE. Another rehabilitation dataset called KIMORE
[Capecci et al., 2019] is collected with Kinect v2 from 78 sub-
jects that are categorized to three groups including Control
Group Expert (CG-E), Control Group Non-Expert (CG-NE)
and Group with Pain and Postural disorders (GPP). The GPP



group has 34 subjects that have different motor dysfunctions
like stroke, Parkinson’s disease and back pain. All subjects
perform 5 exercises (Es1-5) like “lifting of the arms”, “lateral
tilt of the trunk with the arms in extension”, “trunk rotation”,
“pelvis rotations on the transverse plane” and “squatting”. It
is verified in [Capecci et al., 2019] that the clinical total score
distribution of groups CG-E and GPP are without overlap-
ping, which means we could treat their exercise repetitions as
correct and incorrect. Hence, to perform abnormality predic-
tion based on each exercise repetition, we manually segment
the datasetand group the repetitions of 17 experts and 34 pa-
tients as normal and abnormal, respectively.

4.2 Evaluation Metrics
In existing methods, Distance Metric (DM ) and Separation
Degree (SD) respectively defined in [Williams et al., 2019]
and [Liao et al., 2020a] have been used to evaluate the rep-
resentation ability of a model. On the one hand, DM and
SD quantify the difference between the correct and incorrect
evaluation results but cannot reflect the model’s prediction
ability. [Liao et al., 2020a] attempted to show the prediction
ability of their method by dividing the data into training set
and validation set, but only reported the results for the E1 of
UI-PRMD. On the other hand, the results of SD in [Bruce et
al., 2020] reached 0.808 (derived from the training accuracy
of 99.59%) for UI-PRMD by using the orientation feature.
[Bruce et al., 2021b] achieved an even higher SD of 0.933
for UI-PRMD by using the SoftMax to calculate the exer-
cise evaluation score. The main difference of [Bruce et al.,
2020] and [Bruce et al., 2021b] is the way for calculating the
exercise evaluation score, where the former used the sigmoid
function while the latter used SoftMax. This observation indi-
cates SD can be irrelevant to a model’s representation ability
as it can be improved by just changing the calculation method
of exercise evaluation score.

For DM , given two positive sequences x = (x1, . . . , xN )
and y = (y1, . . . , yN ), the DM could be calculated as

DM (xn, yn) =
|(xn − yn)|√

1
N

∑N
i=1 (xn − yn)

2
(9)

To analyze the properness of DM , we implement the methods
in [Bruce et al., 2020] and [Bruce et al., 2021b]. Table 1 gives
the DM results of existing methods, which shows a similar
observation with SD. Hence, we do not continue to use the
evaluation criteria DM and SD.

Method E1 E7

MV [Williams et al., 2019] 0.7367 (0.5383) 0.7659 (0.6012)
PCA [Williams et al., 2019] 0.3777 (0.2063) 0.8161 (0.5281)
ANN [Williams et al., 2019] 0.8717 (0.4330) 0.8696 (0.4246)
GCN [Bruce et al., 2020] 0.9294 (0.1455) 0.8824 (0.1576)
2T-GCN [Bruce et al., 2021b] 0.9870 (0.0640) 0.9772 (0.1137)

Table 1: The results of DM (Std. deviation) for exercises ”deep
squat” and ”standing shoulder abduction” (i.e., E1 and E7, respec-
tively) in UI-PRMD with the orientation feature of skeleton captured
by Vicon motion capture.

Given that both KIMORE and UI-PRMD are relatively
small datasets, we extend the attempt of [Liao et al., 2020a]

by following the 5-fold cross-validation criterion applied in
[Bruce et al., 2021b] to test the prediction ability of different
ensemble strategies in our EGCN.

4.3 Implementation Details
For the cross-validation, we split both UI-PRMD and KI-
MORE based on the subject ID to five folds. The proposed
MLE strategy requires to pretrain the GCN model g(P (n), θg)
with the position feature. The pretrained model could then
be utilized to retrieve the joint importance from the position
feature for model-level data fusion with the orientation fea-
ture. To do so, we use the position feature to pretrain a GCN
model with the action classification task. In our implemen-
tation, we involve all the exercise classes of a dataset. The
overall action classification accuracy for UI-PRMD and KI-
MORE are 96.91% and 98.04%, respectively (please refer to
the supplementary for details). Like single modal methods,
all the ensemble strategies proposed in EGCN are optimized
with the cross-entropy loss using stochastic gradient descent
with a base learning rate of 0.01. By training 50 epochs in
total, we decay the learning rate by 0.1 at epochs 10 and 30.
All experiments are conducted on a workstation with 2 GTX
1080 GPUs.

4.4 Comparison of Different Ensemble Strategies

Exercise
ID

Single Modal Ensemble Strategies of EGCN

POS ORI SLE FLE-1 FLE-2 DLE-1 DLE-2 MLE

E1 71.1 73.3 67.2 64.4 72.8 73.3 71.7 83.3
E2 84.6 83.6 82.7 78.2 83.6 82.7 84.6 91.8
E3 63.7 59.8 53.9 53.9 64.7 62.8 58.8 80.4
E4 70.0 75.7 74.6 70.7 73.6 67.9 74.3 79.3
E5 86.3 79.8 87.8 73.2 83.3 86.3 82.1 89.9
E6 83.6 85.6 82.2 87.7 76.7 81.5 89.0 89.0
E7 80.2 87.3 89.7 72.2 81.0 68.3 88.1 92.1
E8 65.1 61.9 71.4 79.4 81.0 73.8 57.9 81.8
E9 86.7 84.2 78.3 72.5 76.7 86.7 85.8 95.8

E10 74.1 76.9 81.5 79.6 76.9 64.8 73.2 85.2
Average 76.5 76.8 76.9 73.2 77.0 74.8 76.6 86.9

Es1 78.0 77.7 78.0 68.2 66.3 69.8 81.5 79.2
Es2(L) 75.5 72.5 78.6 68.9 78.1 69.4 71.4 81.1
Es2(R) 71.1 80.1 80.1 70.7 74.6 75.6 77.1 80.6
Es3(L) 73.8 84.8 78.1 69.5 72.4 68.6 82.9 77.6
Es3(R) 73.7 74.6 74.6 67.5 67.0 65.1 66.5 76.1
Es4(L) 80.3 74.0 76.2 76.2 83.2 76.2 81.6 84.8
Es4(R) 83.6 79.1 79.6 78.6 78.6 79.6 83.6 84.1

Es5 74.1 77.7 79.2 72.6 74.1 64.3 78.8 77.7

Average 76.3 77.5 78.1 71.5 74.3 71.1 77.9 80.1

Table 2: Comparison of different ensemble strategies and single
modal methods on UI-PRMD (upper table) and KIMORE (lower
table). Accuracy in %. POS and ORI represent position and orien-
tation, respectively.

Table 2 showes the correctness prediction results of all ex-
ercises in UI-PRMD and KIMORE. General ensemble meth-
ods such as SLE, FLEs and DLEs could not effectively take
advantage of multiple skeleton input streams. Although en-
semble strategies of SLE, FLE-2, and DLE-2 can gain some
improvements when compare with single modal methods, the
improvements cannot generalize well to different exercises.
While FLE-1 and DLE-1 could not perform well as they just
simply combine the features. In contrast, our MLE method



achieves greatly better performance than both single modal
and other ensemble methods for almost all exercises of UI-
PRMD and KIMORE datasets, which validates the effective-
ness of our model design.
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Figure 2: Left: visualization of joint importance layers derived from
neuron activation values of the pretrained g. Right: visualization of
mean values along the Cout dimension. Larger neuron activation
values magnify the joint importance and vice versa.

4.5 Ablations & Comparison with State-of-the-art
Ablations. Our MLE can be implemented with different
training strategies. To validate the results of MLE in Table 2,
we conduct ablation study with other five different implemen-
tations of our MLE. Their results are shown in Table 3. “Self
Importance” means using the joint importance derived from
h to replace that from g by fixing one θh and updating another
θh. “Swap h and g” means calculating the joint importance
from h and updating the θg . “No Pretraining” means optimize
h and g together without pretraining g. While “Tune θg” and
“Fix θg” respectively indicate optimizing θh with and without
updating θg of the pretrained g. The results consistently show
that “Fix θg” is the effective setting for our MLE. This verifies
that the learned joint importance is effective to facilitate the
exercise evaluation of the orientation stream. While tuning
the θg will affect its physical meaning (i.e., joint importance).

Besides, we also compare our model design with averag-
ing the joint importance along the Cout dimension (see Fig-
ure 2[right]), which is similar with [Baradel et al., 2018;
Si et al., 2019]. The results of “Fix θg , Mean Along Cout” in
Table 3 indicate that it is not as effective as “Fix θg”, which
might be caused by the smoothing out effect of channel-level
importance. We can observe this from Figure 2(left), where
the joint importance layers are actually changing along the
Cout dimension. While the averaged joint importance in Fig-
ure 2(right) is less informative than the original one.

Comparison with State-of-the-art. We first compare with
state-of-the-art GCN models such as AGCN [Shi et al., 2019]
or MS-G3D [Liu et al., 2020] via single modal setting. Table
4 shows the prediction results of these baselines implemented
with single modal settings (i.e., use either position or orien-
tation). We also use these GCN baselines as the backbone
of our EGCN to further explore different ensemble strategies
proposed in our EGCN on the two datasets (see Table 4).
We can observe that changing the backbone with other ad-
vanced GCN baselines does not lead to stable improvements.
For example, MS-G3D can improve the single modal setting

Model Implementations
Dataset

UI-PRMD KIMORE

MLE (Self Importance) 67.9 76.6
MLE (Swap h and g) 67.7 77.0
MLE (No Pretraining) 76.5 67.8
MLE (Tune θg) 80.0 72.9
MLE (Fix θg , Mean Along Cout) 77.1 77.0

MLE (Fix θg) 86.9 80.1

Table 3: Results of ablation studies for MLE on UI-PRMD and KI-
MORE (Accuracy in %).

of orientation feature for UI-PRMD, but it does improve the
performance of other single modal settings on two datasets.
This might be due to the fact that these GCN baselines are
originally designed for the action recognition task rather than
for exercise evaluation. With our model-level fusion design,
the MLE method using the basic GCN achieves better perfor-
mance than the SLE using MS-G3D on both the UI-PRMD
and KIMORE datasets. This further verifies our intuition that
the joint importance learned from the position stream can reg-
ularize the training of the orientation stream.

Method
UI-PRMD (Kinect v2) KIMORE

GCN AGCN MS-G3D GCN AGCN MS-G3D

Position 76.5 65.7 76.0 76.3 72.5 74.8
Orientation 76.8 77.7 83.7 77.5 72.3 75.5

SLE 76.9 82.3 85.1 78.1 76.7 77.2
FLE-1 73.2 64.4 73.8 71.5 70.6 73.4
FLE-2 77.0 70.6 79.0 74.3 73.3 73.9
DLE-1 74.8 71.4 78.9 71.1 76.8 72.2
DLE-2 76.6 74.1 81.1 77.9 69.7 74.4

MLE 86.9 71.3 84.3 80.1 73.3 75.2

Table 4: Average prediction results implemented with state-of-the-
art GCN models (see rows of Position and Orientation) and different
ensemble methods of our EGCN implemented with different back-
bones, i.e., GCN, AGCN, and MS-G3D (Accuracy in %).

5 Conclusion
In this paper, we propose the EGCN framework with various
ensemble strategies for the exploration of effective skeleton-
based exercise assessment. This is the first work that uses
both position and orientation skeleton features for the task.
With extensive experiments on two latest datasets: UI-PRMD
and KIMORE, the proposed MLE outperforms other ensem-
ble strategies in terms of the prediction accuracy. Meanwhile,
we further verify the proper design of our MLE with ablations
of different training strategies and other baselines. In the fu-
ture, we will investigate if our EGCN can generate evaluation
scores that are consistent with human evaluation and design
online exercise evaluation methods.
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