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Abstract—Clinical handover is a crucial yet high-risk 

communication event in the provision of safe patient care. 

However, training standardized clinical handover in real-world 

scenarios often requires huge labor cost. To tackle with this issue, 

we propose a computer-aided method for delivering intelligent 

training of clinical handover at a low labor cost. Specifically, we 

formulate it as a continuous intent detection task that provides 

timely feedback during a simulated clinical handover conversation. 

Towards this goal, we collaborate with experts from a local 

hospital to collect a clinical handover dataset on real-world 

handover scenarios. According to the sequential nature of the 

handover conversation, we further propose the Intent-Aware 

Long Short-Term Memory (IA-LSTM) model that yields superior 

performance to baseline methods. Our work shows promise for the 

computer-aided training of clinical handover in hospitals and can 

encourage researchers in natural language processing to develop 

methods on standardized communication. 

Keywords—intent detection, conversational system, clinical 

handover, standardized communication training 

I. INTRODUCTION 

Clinical handover refers to the transfer of information about 
a patient’s state and care plan from one clinician to the next [1]. 
It is an essential part in the whole train of patient care and any 
missteps could result in severe consequences, such as delayed 
treatment, medication errors, and even mortality [2]. The 
situation can become even more complicated and perilous 
during an epidemic outbreak, due to understaffed hospitals and 
panic psychology [3]. To help clinical staff avoid omitting vital 
information, standardized clinical communication frameworks 
have been developed. ISBAR (Identify-Situation-Background-
Assessment-Recommendation), a standardized communication 
framework recommended by the World Health Organization [4], 

has been shown of great potential to improve the transparency 
and accuracy of inter-professional and non-face-to-face 
handover in hospitals [1]. This framework provides a systematic 
approach to clinical handover by breaking it down into a series 
of important elements, namely “Identify,” “Situation,” 
“Background,” “Assessment,” and “Recommendation”. Table I 
provides the description of five key elements in the ISBAR 
Framework. Each element can be viewed as a distinct intent for 
delivering pertinent clinical information, thereby ensuring the 
integrity of the clinical handover process. 

TABLE I.  DESCRIPTION OF THE ISBAR COMMUNICATION 

FRAMEWORK  

Element Description 

Identify Identify yourself, the patient and verify the receiver.  

Situation Clarify the problem or reason for contact. 

Background 
Briefly summarize patient’s previous history relevant 

to the current problem. 

Assessment 
Share the latest clinical assessment, investigation, and 

your interpretation of the current situation. 

Recommendation Ask for advice or intervention; state your expectation. 

 
However, ISBAR has not been well applied in real-world 

clinical handover scenarios due to the lack of effective training. 
According to our interviews with clinical staff, there are two 
major reasons for this phenomenon: First, experienced senior 
doctors are usually too occupied to practice communication with 
junior doctors; Second, practices between junior clinical staff 
generally lack fidelity, and they seldom receive timely and 
accurate feedback. Although clinical staff have been instructed 
in standard communication procedures in the classroom, without 
sufficient practice, they may fail to deliver a complete handover, 
especially in emergent situations. 

This work was supported by Innovation and Technology Fund (ITS/110/19) 

from the Innovation and Technology Commission of Hong Kong. 
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Recently, computer-aided method has shown its promise in 
automating some training processes such as social skills training 
[5] and hotline counsellor training [6], which provides lifelike 
practice with low labor cost. Meanwhile, Natural Language 
Processing (NLP) techniques have led to transformative 
advances in clinical informatics research [7]. Therefore, we are 
motivated to use computer-aided methods to facilitate low-
labor-cost and intelligent clinical communication training. 
Specifically, in a simulated clinical scenario, the clinician 
practice standardized handover through a conversational system. 
And this system should be able to detect the intents of clinical 
handover based on the ISBAR framework and give timely 
feedback to the clinician. Towards this goal, the problem is 
formulated as continuously detecting the sentence-level intent 
given all of the conversation history so far. 

With the advancement of Deep Learning (DL), neural 
networks have been widely applied in intent detection and 
achieve great performance improvements [8]. However, there 
remains some challenges to directly apply existing intent 
detection models on standardized clinical communication. First, 
these models capitalize on large amounts of labelled data [9], 
and scaling existing intent detectors to new target domains is 
vulnerable to negative transfer due to the large disparity in data 
characteristics [10]. Second, unlike general intents, intents 
derived from the ISBAR framework are sequentially interrelated. 
This emphasizes the critical nature of considering sequence 
information when detecting intents in clinical communication, 
which is not the case with the majority of existing models. 

To address the aforementioned challenges, we propose a 
model called Intent-aware Long Shot-Term Memory (IA-LSTM) 
to incorporate the sequential feature in ISBAR standardized 
communication. Experiments on clinical handovers in real-
world scenarios demonstrate that our IA-LSTM significantly 
outperforms baseline models. The proposed intent-aware 
mechanism can be further applied to other DL models, 
substantially boosting their performance. 

II.   RELATED WORK 

Intent detection has been studied for long, where classical 
machine learning approaches include support vector machine, 
K-nearest neighbours and decision tree [11]. With the success of 
DL, neural networks started to be widely used for this task [12]. 
For DL methods, text data is first represented using word 
embedding, which projects sparse word representations into 
low-dimensional, dense vector representations [13]. Typical 
word embedding algorithms include word2vec [14], GloVe [15], 
and FastText [16]. After word embedding, different neural 
networks can be applied for intent detection, such as 
convolutional neural networks [17] and recurrent neural 
networks (RNN) [18]. Long Short-Term Memory (LSTM) 
network [19], a popular variant of RNN, has shown the great 
power in modelling the temporal relationship of text and 
capturing long-term dependencies. It uses memory cell and gates 
to control the information flow and solves the gradients 
vanishing and exploding problems in vanilla RNN training [19]. 
Based on the LSTM structure, further developments have been 
made by adding bidirectional mechanism [20], attention 
mechanism [21], hierarchical structures [22] and convolutional 
layers [23]. 

Despite the superiority in handling sequential data, RNN-
based models requires input data to be processed in order, which 
limits the speed of training. Transformer [24] solved this issue 
by using self-attention blocks solely - all tokens are processed at 
the same time and attention weights between them are calculated. 
In this way, Transformer facilitates more parallelization during 
training and enables training on larger datasets. It is now 
replacing older RNN models and leading to the development of 
large pretrained systems [25]. BERT (Bidirectional Encoder 
Representations from Transformers) [26], one of most popular 
pretrained models, has achieved state-of-the-art performance in 
many NLP tasks. The BERT-base model is constructed by 12 
layers of transformer blocks with 100M parameters, and 
pretrained over 3.3 billion word corpus [26]. It then can be used 
for a wide range of NLP tasks simply by fine-tuning on the 
specific task without architecture modifications. 

In addition to the development of neural network structures, 
significant progress has been made on intent detection by 
integrating extra information, e.g., learning with external 
knowledge [27], and taking slot-filling as joint tasks [28]. As 
discussed in Section I, in standardized clinical handover, 
sequential information plays an important role in understanding 
the intent of the current sentence. Therefore it can serve as the 
extra information for intent detection. How to model the 
sequential information varies with different classification tasks. 
For example, Wu et al. [29] constructed propagation graph to 
model the sequence of message spreading for online rumor 
detection; Zhou and Li [30] used headings and sentence 
locations as the sequential information for medical paper section 
identification. 

In a clinical handover conversation, contents are organized 
under the guidance of the ISBAR framework. Specifically, the 
ISBAR standard communication framework divides clinical 
handover into five intents (i.e. Identify, Situation, Background, 
Assessment, and Recommendation), connecting in the specific 
order. Thus, the order of intents can be used to represent the 
sequential information in a clinical handover conversation. 
Unlike previous work with explicit sequential information [29], 
[30], the true order of intents are unknown in our task, and we 
only have the model’s predicted ones. Hence, we can use the 
order of detected intents to simulate the sequential information, 
which unfolds as intent detection progresses. 

III. METHOD 

In this section, we formulate the problem of intent detection 
on an ongoing clinical handover and introduce our proposed IA-
LSTM model in detail. 

A. Problem Formulation 

Given a conversation with 𝑁 sentences from the clinician’s 

side, we denote it as  𝒟 = {(𝑠(𝑛), 𝑦(𝑛)) ∣ 𝑛 ∈ ℤ, 1 ≤ 𝑛 ≤ 𝑁} , 

where 𝑠(𝑛)  is the 𝑛-th sentence and 𝑦(𝑛)  is the corresponding 
intent label represented in one-hot encoding. We further denote 

the 𝑛-th sentence as a sequence of word embeddings 𝑠(𝑛) =
 (𝑤1, … , 𝑤𝑡 , … , 𝑤𝑇) , where 𝑇 is the number of words in 𝑠(𝑛), 
and 𝑤𝑡 ∈ ℝ𝑀  is a 𝑀-dimensional word embedding of the 𝑡-th 
word. In the ongoing setting, we only have the first 𝑛 sentences 

of the conversation when 𝑠(𝑛) is given out. Thus, we formulate 
the problem as an objective of learning a model 𝐺  for intent 
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detection on a subset of the conversation, which can be written 
as 

 �̂�(𝑛) = 𝐺(𝒔(𝑛), Θ)   (1) 

where Θ  is the parameters of the model 𝐺 , and �̂�(𝑛) =
 (�̂�(1), … , �̂�(𝑛))  is the model predictions given the input 

sentences 𝒔(𝑛) =  (𝑠(1), … , 𝑠(𝑛)) in the conversation 𝒟.  

A general procedure of applying DL models to intent 
detection consists of three steps: preprocessing, vectorization, 
and classification, as illustrated in Fig. 1. The first step 
preprocesses the raw input sentence and to obtain a sequence 
of tokens. The second step vectorizes each token by word 
embedding. Taking embedded vectors as input, the third step 
classifies the intent with DL models such as RNN and CNN. In 
the ongoing setting, sentences are given in a consecutive 
manner in a clinical handover conversation, corresponding to a 
chain of intents. 

 

Fig. 1. Procedures of intent detection, including preporcessing, vectorization, 

and classification. Under the ongoing setting, we predict the intent vector of the 

first 𝑛 sentences in the clinical handover. 

B. Intent-aware LSTM 

1) Sentence Representation: Given the vectorized word 

embeddings 𝑠(𝑛) = (𝑤1, … , 𝑤𝑡 , … , 𝑤𝑇) , many DL models 

could be adopted to learn representations of the input sentence. 

It remains controversial which DL model can perform better 

especially on relatively small datasets [31]. For the ease of 

understanding, we adopt a basic LSTM [19] as the backbone 

model. The LSTM unit uses three different gates to regulate the 

information flow from previous steps to the current step: an 

input gate, an output gate, and a forget gate. At each time step 

𝑡 ∈ [1, … , 𝑇] , for its corresponding embedding 𝑤𝑡 , LSTM 

calculates its current hidden state output vector ℎ𝑡 based on a 

memory cell 𝑐𝑡 and an output gate 𝑔𝑜 as 

               
𝑔𝑜 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝐼𝑜𝑤𝑡)

ℎ𝑡 = 𝑡𝑎𝑛ℎ (𝑔𝑜 ⊙ 𝑐𝑡)
      (2) 

where 𝑊𝑜  and 𝐼𝑜  are weight and projection matrices, 
respectively.  𝜎 represents the logistic sigmoid function, and ⊙ 
is the element-wise multiplication. While the memory cell 𝑐𝑡 is 
calculated with three gates that can be defined as 

𝑔𝑐 = 𝜎(𝑊𝑐ℎ𝑡−1 + 𝐼𝑐𝑤𝑡)

𝑔𝑓 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝐼𝑓𝑤𝑡)

𝑔𝑢 = 𝜎(𝑊𝑢ℎ𝑡−1 + 𝐼𝑢𝑤𝑡)

𝑐𝑡 = 𝑔𝑓 ⊙ 𝑐𝑡−1 + 𝑔𝑢 ⊙ 𝑔𝑐

  (3) 

where 𝑔𝑐, 𝑔𝑓, and 𝑔𝑢 are the activation vectors of the cell state, 
output, and input gates, respectively; The recurrent weight 

matrices are denoted by 𝑊𝑐 , 𝑊𝑓 , and 𝑊𝑢 ; The projection 

matrices are represented as 𝐼𝑐 , 𝐼𝑓 , and 𝐼𝑢 . For the input 

sequence 𝑠(𝑛) = (𝑤1, … , 𝑤𝑡 , … , 𝑤𝑇) , we take the last hidden 

state ℎ𝑇 of the LSTM model as its sentence representation �̂�(𝑛), 
which will be used for intent detection. 

2) Intent-Aware Design: Fig. 2 shows the structure of our 

proposed IA-LSTM with an intent-aware mechanism that 

incorporates the preceding intents for the intent detection of the 

current input. Let 𝑝(𝑛) ∈ ℝ𝐶  denote the probability distribution 

vector of the intent information for the 𝑛-th sentence 𝑠(𝑛) ∈
ℝ𝐷×𝑇, where 𝐶 is the number of intent labels. Given the current 

input sentence 𝑠(𝑛) , we have 𝒑(𝑛−1) = (𝑝(𝑛−𝑘), … , 𝑝(𝑛−1)) , 

1 ≤  𝑘 <  𝑛 −  1, indicating its detected preceding intents in 

the probability distribution format. Fig. 2 illustrates the model 

structure when 𝑘 =  1 (i.e., 𝒑(𝑛−1) = 𝑝(𝑛−1)). To calculate 𝑝(𝑛), 

we first concatenate the latest previous intent probability 

distribution vector 𝑝(𝑛−1)  with the current sentence 

representation �̂�(𝑛). Then, using a fully connected layer and a 

SoftMax layer, our IA-LSTM makes predictions based on the 

concatenated representation. The inference process can be 

written as 

𝑝(𝑛) = SoftMax (𝐹([𝒑(𝑛−1), �̂�(𝑛)]))  (4) 

where F is the fully-connected layer. For the first sentence in 
conversation 𝒟, we set its preceding intent information as a 𝐶-
dimensional zero vector. 

 

Fig. 2. Structure of IA-LSTM. The intent-aware mechanism is realized by 

concatenating intent information (i.e., 𝑝(𝑛−1), the probability distribution after 

the SoftMax layer) of the preceding sentence 𝑠(𝑛−1) with the current sentence 

representation �̂�(𝑛)  learned from the backbone model LSTM (i.e., the last 

hidden state ℎ𝑇). 

3) Optimization: Given the proposed IA-LSTM model 𝐺 as 

defined in Equation 4, we use the cross-entropy loss to optimize 

it, which can be written as 

arg 𝑚𝑖𝑛
Θ

− ∑  𝑁
𝑛=1 ∑  𝐶

𝑐=1 𝑦𝑐
(𝑛)

𝑙𝑜𝑔 (𝑝𝑐
(𝑛)

) (5) 

IV. EXPERIMENTS 

In this section, we introduce the experimental setting, which 
includes the dataset, baseline methods, and hyper-parameters. 
We then present experiment results and discuss the effectiveness 
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of IA-LSTM in intent detection and the generalizability of the 
intent-aware mechanism. 

A. Experimental Setting 

1) Dataset: In collaboration with Queen Elizabeth Hospital, 

we collected clinical handovers for both medical and surgical 

cases. During the handover process, a junior doctor reported the 

case to a senior doctor based on the related documents including 

medical records, notes, and various testing reports (e.g., 

hematology reports, chemical pathology reports, CT scans). To 

protect patients’ privacy, we fabricated all personal information 

in the conversations. Finally, we gathered 100 recordings from 

the junior doctor’s side, totalling 1895 sentences. Each sentence 

was labeled by the clinical expert based on the ISBAR 

framework. Here, we divided all sentences into training, 

validation, and test splits with a ratio of 6:2:2. The distribution 

of sentences of each intent is presented in Table II. 

TABLE II.  DATA SPLITS OF COLLECTED CLINICAL HANDOVERS. 

Split Item Total I S B A R 

#Training 1159 141 61 327 455 175 

#Validation 366 40 18 91 151 66 

#Test 370 49 18 95 156 52 

 

2) Baselines: LSTM [19] is same as the backbone model 

used in our IA-LSTM. For LSTM and all its variants, we use 1 

layer and set the hidden size as 16. 

Bidirectional LSTM (BiLSTM) [20] uses two LSTMs taking 

the input in both forwards and backwards directions. 

Attention-based LSTM (AttLSTM) [21] learns attention 

information from the embedding representation to guide the 

model in focusing on specific parts of the sentence for the 

classification task. 

TextCNN [17] presents an implementation of CNN on NLP 

tasks which puts word embeddings into three separate 

convolutional layers and concatenate their output to a linear 

layer. Following the setting in the original paper, we use three 

kernel sizes (2, 3, 4) and each has 5 kernels. 

Recurrent CNN (RCNN) [23] represents a sentence with a 

concatenation of the output of BiLSTM and the word 

embedding of GloVe [15]. 

Transformer [24] is a multi-head self-attention structure that 

has outperformed RNN/CNN based models on machine 

translation tasks with faster training speed. We used a 1-layer 

two-head encoder and average the encoder output layer before 

the fully connected layer. 

BERT [26] is a deep bidirectional Transformer architecture 

pretrained over a 3.3 billion word corpus. It has shown state-of-

the-art performance on many NLP tasks. Here we fine-tune on 

the BERT-base model and connect the output of the first token 

(the [CLS] token) to a fully connected layer. 
Concatenate BiLSTM (CLSTM) [30] uses the nearby 
sentences processed by BiLSTM to aid classification of the 
current sentence. In our experiment, 𝑘  sentences before the 
current sentence are used to model sentence-level 
interdependencies. 

3)  Hyper-parameters: We use glove.6B.50d [15] for 

embedding initialization (except for BERT), which is trained 

on Wikipedia 2014 and Gigaword5 with 6B tokens and 400K 

vocabularies. For Transformer and BERT, the sentence length 

is fixed to 32, while other models take inputs of variable lengths. 

We use a batch size of 16 to train BERT and 1 for other models. 

And we set 𝑘  = 1 for CLSTM and IA-LSTM. During the 

training process, Adam optimizer is used for all the models. We 

set the learning rate to 1e-3, drop out rate 0.2. For parameters 

in the original BERT model, we set the learning rate to 1e-5. 
For a fair comparison, we conduct five rounds of 

experiments for all models with five random seeds (1, 12, 123, 
1234, and 12345) and record the test accuracy when each model 
achieves the best performance on the validation set within 50 
epochs. We report the average test accuracy of five rounds for 
all models. 

B. Results and Discussion 

Since the dataset contains an unbalanced proportion of 
different classes, we report both Accuracy and Macro F1-Score 
as performance measures. 

1) Effectiveness on Intent Detection: Table III shows a 

comparison of baseline models and the proposed IA-LSTM on 

the collected clinical handovers. Among all baseline models, 

BERT achieves the highest accuracy, 84.86%. And CLSTM 

improves BiLSTM by considering the interdependencies of 

nearby sentences, reaching an accuracy of 83.68%. 

Representing the sequential information by intent labels, our 

IA-LSTM outperforms all baselines with noticeable 

improvements: our model’s performance surpasses the state-of-

the-art BERT with an enhanced accuracy of 3.57%. IA-LSTM 

also significantly improves the results of its backbone model 

LSTM (from 81.84% to 88.43%), demonstrating the 

effectiveness of the intent-aware mechanism. With an accuracy 

of 88.43%, our model can feasibly be deployed to a 

standardized clinical communication training system. 

TABLE III.  PERFORMANCE OF BASELINES AND IA-LSTM (%). 

Model Accuracy F1-Score 

LSTM [19] 81.84 77.47 

BiLSTM [20] 79.78 74.47 

AttLSTM [21] 81.62 78.04 

TextCNN [17] 79.90 74.14 

RCNN [23] 82.86 78.51 

Transformer [24] 78.92 73.39 

BERT [26] 84.86 81.09 

CLSTM [30] 83.68 84.36 

Our IA-LSTM 88.43 85.76 

 
Discussion: how does LSTM benefit from the intent-aware 
design? To further investigate how IA-LSTM improves the 
intent detection in each class, we provide the confusion matrices 
for LSTM and IA-LSTM (see Fig. 3). These matrices show that 
all detection accuracy along the diagonal are enhanced, with the 
detection accuracy of intents A and S achieving more noticeable 
improvements. This outcome is consistent with fact that intents 

14

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 04,2022 at 06:44:59 UTC from IEEE Xplore.  Restrictions apply. 



S and A are closely related and difficult to distinguish. Our 
intent-aware design enables the model to look at the preceding 
sequences and infer the difference. 

 

Fig. 3. Confusion matrices of LSTM and IA-LSTM on clinical handovers. 

Table IV displays two consecutive sentences in a 
conversation which is classified wrongly by LSTM. Without 
knowing the intent of the previous sentence, LSTM classifies the 
target sentence as S (Situation). Indeed, this sentence could 
serve as a summary of the patient's situation or a reason for 
calling. However, based on the preceding sentence,  it is clear 
that the subsequent sentence presents an assessment. With the 
intent information, IA-LSTM is able to classify the target 
sentence as A (Assessment). 

TABLE IV.  TWO CONSECUTIVE SENTENCES IN A CONVERSATION. 

 Sentence Intent 

(Previous) And I have revealed the CT scan ... A 

(Target) 
So I think the problem is that the patient suffered from 
an acute gangrenous appendicitis and probably and 

very likely perforation. 

A 

  
We have discussed the performance of IA-LSTM when 𝑘 =

1, which outperforms all baseline models (see Table III). To 
further validate the effectiveness of our IA-LSTM, we perform 
ablation on the value of 𝑘 – the number of preceding intents 
incorporated in the model. Fig. 4 shows the performance of IA-
LSTM when choosing different values of 𝑘 . With different 
values of 𝑘 , the model maintains stable performance that is 
significantly better than when no preceding intents are included 
(Accuracy 81.84%, F1-Score 77.47%). It is observed that 
increasing the value of 𝑘 improves performance further, with the 
highest accuracy and F1-Score being 90.91% and 90.51% when 
𝑘 = 4. This demonstrates the effectiveness and potential of the 
intent-aware design once again. From the sharp improvement 
before 𝑘 = 4 and the slight decline after, we can learn that the 
most recent preceding intents are more important in 
understanding the current sentence, whereas the intents further 
away provide limited information, which is consistent with 
common human conversation. 

 

Fig. 4. The performance of IA-LSTM with different 𝑘 values (%). The nodes 

on the lines indicate the average results of implementations with 5 different 

seeds. The shade areas indicate the upper and lower bands for the results. 

2) Generalization to other DL Models: Given the 

effectiveness of our intent-aware design, we further expand it 

to other baseline models. Most DL models for text classification 

contain a fully connected layer as the final layer to predict the 

label. We denote the input of the final layer as a sentence 

representation �̂� . Based on the same idea in IA-LSTM, we 

extend our intent-aware design to general DL models by 

concatenating the intent vector with  �̂� and passing it to a fully 

connected neural network. For the ease of comparison, we set 

𝑘 to 1 for all the expanded implementations. 

TABLE V.  PERFORMANCES OF BASELINES WITH AND WITHOUT THE 

INTENT-AWARE DESIGN (%). 

Model 
w/o Intent-aware w/ Intent-aware (𝒌=1) 

Accuracy F1-Score Accuracy F1-Score 

LSTM 81.84 77.47 88.41 (↑6.61) 85.81 (↑8.31) 

BiLSTM 79.78 74.47 88.41 (↑8.61) 86.61 (↑12.11) 

AttLSTM 81.62 78.04 90.11 (↑8.41) 87.91 (↑9.91) 

TextCNN 79.90 74.14 88.41 (↑8.51) 86.71 (↑12.61) 

RCNN 82.86 78.51 90.31 (↑7.51) 88.81 (↑10.31) 

Transformer 78.92 73.39 88.11 (↑9.21) 85.81 (↑12.41) 

BERT 84.86 81.09 88.21 (↑3.31) 86.41 (↑5.31) 

 
Table V shows a comparison of baseline models and their 

intent-aware versions. Notably, our approach to incorporating 
proceeding intent information is robust to different model 
structures and model sizes. All models’ performance improve 
greatly, with RCNN achieving the best accuracy of 90.31%. 
This general improvement reflects strong correlations between 
sentences, consistent with our observation. 

Discussion: why is the improvement of BERT not that 
significant? The BERT-base model used in this paper contains 
110M parameters, which is almost a thousand times larger than 
the other baselines. To expand our intent-aware design to BERT, 
we concatenate the intent vector 𝑝 with �̂� generated by BERT 
(the output of the [CLS] token) and pass it to a fully connected 
layer. It is worth noting that different models may have different 
dimensions of �̂�, but the same dimension of 𝑝 (i.e., 5). For other 
baseline models, the dimension of �̂� is between 16 to 50: LSTM 
has �̂� of dimension 16, BiLSTM 32, AttLSTM 16, TextCNN 15, 
RCNN 16, and Transformer 50. However, BERT generates a �̂� 
of dimension 768, much larger than other baseline models. 
When confronted with this dominant vector size (768 vs. 5), the 
intent-aware design still improves the accuracy of vanilla BERT 
by 3.3%, which again confirms the effectiveness and 
generalization ability of our intent-aware mechanism. 

V. CONCLUSION 

In conclusion, this paper facilitates intelligent training of 
standardized clinical handover by solving the continuous intent 
detection problem. We propose a novel intent-aware algorithm 
IA-LSTM based on the sequential feature of standardized 
clinical communication. Extensive experiments and 
comparisons on clinical handovers have verified the 
effectiveness and generalization ability of our intent-aware 
design. Our work lays a foundation for the deployment of 
clinical communication training systems. This initial attempt of 
applying NLP techniques to the clinical communication training 
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will promote the development of communication training 
systems and inspire researchers in the intent detection domain. 
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